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Abstract: Electrochemical interfaces are the core of various important fields, such as
energy conversion and storage, biochemistry, sensors, and corrosion. The investiga-
tions of the structure-performance relationship of electrochemical solid-liquid interfaces
have become a hot topic yet extremely challenging due to the fact that the interfaces are
ultrathin, highly dynamic and extremely complex. Mass spectrometric techniques cou-
pled with electrochemistry are powerful and have been widely applied in investigations of
mechanisms of electrochemical reactions. However, traditional mass spectrometry
(MS) is difficult to characterize the electrode-electrolyte interfaces in an in situ manner
due to inherent limitations existing in their ionization processes. In recent years, the

state-of-the-art in situ liquid time-of-flight secondary ion MS (ToF-SIMS) based on
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high-vacuum compatible microfluidic devices has been developed to tackle with this
challenge. This review mainly reviewed the principle, characteristics and rapid develop-
ment of in situ liquid ToF-SIMS in real-time and in situ investigations of electrochemical
solid-liquid interfaces during the past decade. In situ liquid ToF-SIMS possesses shallow
information depth (nm), high temporal resolution (pus) and high detection sensitivity
(107°-10"7). Besides, it ionizes the electrochemical interfaces in a truly in situ manner
and provides direct molecular evidences of chemical evolution of both electrode/electro-
catalyst surfaces and reactants/intermediates/products in electrolytes at the interfaces
simultaneously. Being attributed to its uniqueness, in situ liquid ToF-SIMS has become
a powerful and versatile molecular “eye” in in situ and real-time tracking dynamic elec-
trochemical solid-liquid interfaces, such as capturing electrochemical reaction intermedi-
ates, identification of electrocatalytic active sites, probing fine structures of electro-
chemical double layers, and unraveling the formation chemistry of solid-electrolyte
interphases in batteries. Further innovations of microfluidic electrochemical devices and
ToF-SIMS instruments are desired to promote the enhanced performance and wider
applications of in situ liquid ToF-SIMS in the electrochemical field, and in situ liquid
ToF-SIMS will make significant contributions to the understanding of the structure-
performance relationship of interfaces in complex electrochemical assays and guide the
engineering of better electrochemical interfaces in important fields, such as electrocatal-
ysis and batteries.

Key words: electrochemical solid-liquid interfaces; in situ liquid time-of-flight secondary

ion mass spectrometry; in situ analysis; real-time analysis

H A 27 ) 45 2 AR YRR 4 5 A i L AR Ak
Sf AL IR R A AR 2 S A% 0. Bk
S R R A A WA - H R T A AL L BV RE A
TAT b o A 455 717 F A R R, BT 22 ) ) A e A A
HEAE L R A e A g fe . 70> 7 ROE Bsk
B D7 40 H, Al 27 B T 25 A S B T S g B A
AR TR PR i A BT A RO R L X R
AL 22 R &R AR BT L HE Bl A OC ST & i 2
A E B E

Fuil (MS) R B REUE & AL —1
9 ][R A0 AfT 2 41 43 SR, 1971 4F, Brucken-
stein FEE YO MS HAR BT A ALK R AL
Dhker i B ¥ R AL AL BN ). BEE MS
BRI AW & & HE T iz T i Ak 2 S
BLHIAF 58 ™ JE 2 H 88 25 W g (ESD Y
7 W P, T 55 F, 5 (DESD ™) 7E I 45 W Ak 2%
S50 F T A R A A5 R T A T R
Ji& o i — S0k 50K B & BE R o AR A iy
S AR A B T RN HESh T AR 2E RN
WRERRA LR . R AE G MS FiRZ &

T AR A [ A BRI Tk 2 B A 2 R
i TH] 235 48 1) S S BRI AR H A 2 T A A
55 LT SN AIL R 2Z 18] A ROE RN

AT ] R B 5% (ToF-SIMS) J& —
i 51 E 114 3¢ BT 3 BT BRI AR R BT A B
A2 SO I R B9 o O A Ak o AL TE 4 A L 2o
5 5N AIL I Y S B S AR T Rk kL
R0 T B 2L 5 MS HUR YA 14 58 .

A OB 1] 22 41 ToF-SIMS $ AR 11 J5L 3
HL b 2l g A T 9 A SR A ToF-SIMS #F 5%,
R R S AL AR ToF-SIMS AR 1y Jit 7 L 45 14
T FLAF v Ak 2 BT S i A AF 5 A g aE
J& . A B HE 3y B AL WA ToF-SIMS 78 #%
T R L AL S RS TV R R R Y
HE—2L W .

1 ToF-SIMS WEIBRMR
1.1 ToF-SIMS JRIE

ToF-SIMS J& 75 # 5 F. 25 B SR i g i Y
— R B S A S R IR T AR IE R



5514 TR IHEME A L T R ROR AT I 1) R T 5 A v A T RS T BT S 3

UK B T 5 B BB N JU 4k 40 BT 4 2 A7 O A
AT [F] B AR AR S A R VR R A AR R
FE 1, ToF-SIMS # 2 43 #r i 19 15 8 IR JE AL
Shy 22T PR L O — P R e v 1 2T 43 AT 7

Mirror
%

Detector Mass spectrum

Primary ion beam

o Secondary ions

-” Primary ion

s X4 o0 AL £ P A R I R Rk
107 ~107" fE 7, L b, ToF-SIMS — K
BT AT R <100 nm, H AR A 2 I X
Z i v 23 ] BRRE D

Secondary ions and molecules

y o .8’
o , O ~+ ..._

:oo.o.. ?..%.00330“.0 rlo-ls A

v
1

Coilision cascade on the sampie

B 1 ®ATHEZREFRIENSTRE
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