THE STRUCTURAL CHARACTERIZATION OF TRITERPENOID SAPONINS FROM CHINESE MEDICINAL HERBS USING ESI-MS^N CUI Meng, LIU Shuying, SONG Fengrui, SUN Weixing (Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China) Triterpenoid saponins are a class of natural products widely used as folk medicine with various bioactivities, such as cardiac, antifungal, hemolytic activities. Electrospray ionization mass spectrometry combined with multi-stage tandem mass spectrometry (ESI-MSⁿ) provides a powerful tool for the structure elucidation of bioactive constituents.¹⁻² The characteristic fragmentation of fifteen triterpenoid saponins from two kinds of chinese medicinal herbs by ESI-MSⁿ is reported in this paper. These triterpenoid saponins were extracted with n-BuOH and separated on silica gel and reversed phase silica gel. Mass spectrometric experiments were performed with a commercial LCQ instrument with an electrospray source. Five triterpenpoid saponins which consist of the aglycone unit of oleanolic acid and two oligosaccharide chains have been investigated by ESI-MSⁿ. The characteristic fragmentation pathways of these saponins are obtained. In the MS¹ spectra of saponin A, the ion (at m/z 1081) observed is sodium-adduct of the molecule ([M+Na]⁺) for the strong alkali cation affinity of saponin. In the MS/MS spectrum of the m/z 1081 ion, the fragment ions at m/z 935 and 611 are produced by losing a deoxyhexose sugar and a composition of two hexose sugars and a deoxyhexose sugar, respectively. As of the presence of an acetyl group in saponin A, the privileged cleavage of a glycosidic bond often occurs at the 28-O linked glycosyl moiety. Therefore the main fragment ion at m/z 493 is produced. The mass difference between the parent ion at 1081 and the daughter ion at m/z 493 is in agreement with the molecular mass of an arabinoside of oleanolic acid. Then MSn (n>2) experiments were performed to determine the structure of the m/z 493 ion. Ring-cross ions are produced by subsequent retro-Diels-Alder fragmentations and γ-proton rearrangments as shown in Figure 1. These fragmentation ions provide the structure information of oligosaccharide chain. The structure of saponin A is shown in Figure 2. Twelve triterpenpoid saponins which consist of the aglycone unit of panaxadiol or panaxatriol and different oligosaccharide chains were determined by the similar methods. The similar [M+Na]⁺ ions of these saponins were observed in the positive spectra. In the negative mode, the [M-H] ions were produced. The molecular weights of the native saponins were determined. In the MSⁿ spectra, the fragment ions are arising from glycosidic bond cleavages of glycosyl moieties of saponins which are important for the determination of the sugar sequence of the saponins. Figure 1. MS/MS spectrum of the m/z 1081 ion ([M+Na]+). Figure 2. The structure of saponin A. ## **REFERENCES** - J. L. Wolfender, S. Rodriguez, et al. J. Mass Spectrom. Rapid Commun. Mass Spectrom, S35 (1995) - 2 V. Kovacik, J. Hirsch, et al. J. Mass Spectrom., 30: 949 (1995)