双势阱平面离子阱的设计与模拟研究

王新宇¹,任 熠^{1,2},洪 义²,黄 奇¹,

陈政阁1,袁立永3,黄正旭1,李 梅1,周 振1

(1.暨南大学质谱仪器与大气环境研究所,广东广州 510632;2.广州禾信仪器股份有限公司,广东广州 510530;3.中国科学院高能物理研究所,北京 100049)

摘要: 双势阱平面离子阱作为离子收集与聚焦装置, 2 个势阱可分别实现进入离子的收集和约束离子的 可控冷却及抛出,相比于单势阱平面离子阱,其对离子的收集与聚焦更加充分。本工作利用 SIMION 8.1 离子光学模拟软件,研究离子阱工作的 4 个阶段,即离子收集、离子转移、离子冷却和离子抛出。模 拟得到离子阱的工作周期可从 1 ms 延长至超过 10 ms,总离子传输效率为 83%,离子通量上限达 1.6× 10⁶ 个。此外,充分冷却的离子从离子阱中抛出,具有 1.0、1.0 mm 的径向直径,24 mrad、16 mrad 的角 度标准偏差,15 eV 的能量标准偏差。双势阱平面离子阱的工作周期、离子通量、抛出离子均满足多次 反射飞行时间质量分析器的工作需要,并可与其耦合,为其提供通量高、状态集中的引入离子。 关键词:离子阱;势阱;离子光学模拟;质量分析器 中图分类号:O657.63 文献标志码:A 文章编号:1004-2997(2023)01-0034-12

doi:10.7538/zpxb.2022.0045

Design and Simulation of a Double Potential Well Flat Ion Trap

WANG Xin-yu¹, REN Yi^{1,2}, HONG Yi², HUANG Qi¹, CHEN Zheng-ge¹, YUAN Li-yong³, HUANG Zheng-xu¹, LI Mei¹, ZHOU Zhen¹

(1. Institute of Mass Spectrometry and Atmospheric Environment, Jinan University,
Guangzhou 510632, China; 2. Guangzhou Hexin Instrument Co., Ltd, Guangzhou 510530, China;
3. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China)

Abstract: A double potential well flat ion trap was designed as an ion accumulating and focusing device for multi-reflection time-of-flight mass analyzer. Two potential wells of the trap were severally used for accumulation of injected ions, controlled cooling and ejection of trapped ions, which had features to accumulate ions continuously and cool ion for almost one period. While a flat ion trap with only one potential well is a traditional and excellent ion accumulating and focusing device, which has an intermittent ion accumulation and an ion cooling around half period. Compared with the single potential well flat ion trap, the double potential well flat ion trap had better performance on ion accumulation and focusing in principle. Four steps to run the trap were simulated and researched by an ion optics simulator of SIMION 8. 1. The first step was ion accumulation

tion, ions were successively injected into the trap, and then stored and accumulated in the first potential well. The second step was ion transfer, the trapped ions were transferred from the first potential well to the second potential well. The third step was ion cooling, the trapped ions were confined in the second potential well, and were simultaneously cooled by collisions with 0.5 Pa He. The fourth step was ion ejection, the trapped ions were ejected from the trap and focused into the next device. Ion optics simulations indicated that the trap had a period from 1 ms to above 10 ms, a total ion transmission efficiency of 83%, and an ion flux of at most 1.6×10^6 ions. In addition, ion packets ejected from the trap had thermalized with radial diameters of 1.0 and 1.0 mm, angular standard deviations of 24 mrad and 16 mrad, and an energy standard deviation of 15 eV. This trap can be coupled with and provide high-flux and fullfocusing ion packets for multi-reflection time-of-flight mass analyzers, due to an excellent suitability between the operation of the analyzer and the period, the ion transmission efficiency, the ion flux, and ejected ion packets of the trap.

Key words: ion trap; potential well; ion optics simulation; mass analyzer

飞行时间(time-of-flight, TOF)质量分析 器[1-4] 具有分析速度快、质量范围宽、灵敏度高 等特点,易与各类装置联用,以其为核心开发的 各种 TOF 质谱仪已广泛应用于科研^[5-7]、民 生[8-10]、国家安全[11-12]等领域。多次反射飞行 时间(multi-reflection time-of-flight, MR-TOF) 是一类新型的 TOF 质量分析器^[13-15],通过使 离子在2组无网反射镜间来回反射以延长离子 的飞行距离与飞行时间,实现超高的质量分辨 率(≥100 000),同时分析时间较短(1×10¹ ms 数量级),目前主要用于核物理中短寿命离子、 重离子等的精确质量测定[16-18]。引入离子的状 态影响 TOF 质量分析器的分辨性能^[19-21]。相 比于较短离子飞行距离(1×10°m数量级)的 常规 TOF 质量分析器,具有极长离子飞行距 离(1×10² m 数量级)的 MR-TOF 对引入离子 的直径(1×10° mm 数量级)^[22-23]、角度分散(1 ×10¹ mrad 数量级)^[24-26]以及能量分散(1×10¹ eV 数量级)^[27-29]提出了更高要求。因此, MR-TOF 质量分析器前需要耦合离子收集与聚焦 装置,用于对时间离散离子的收集和对收集离 子位置、能量等的聚焦,以产生通量更高、状态 更集中的引入离子[30-32]。

日本高能加速器研究机构(KEK)采用自 主研制的平面离子阱(flat ion trap, FIT)作为 离子收集与聚焦装置,实现了MR-TOF质量分 析器的超高质量分辨^[33]。该 FIT 为变形的线

型 Paul 阱(linear ion trap, LIT),采用 2 片平 面印刷电路电极组构成基本结构,轴向分割为 7个部分,并施加不同的脉冲电压,形成周期性 变化的单势阱。由于离子收集、离子冷却、离子 抛出所需的势阱各不相同,仅具有单势阱的 FIT 无法同时实现上述各工作过程,离子收集 与离子冷却仅占 FIT 工作周期的一部分,从而 造成离子收集不充分、离子通量少、质量分析器 灵敏度降低和离子聚焦不充分、离子(空间、能 量)分散大、质量分析器分辨性能下降等问题。 为解决上述问题,KEK 在 FIT 前耦合额外的 LIT,分别并同时实现了离子冷却与离子收集, 提高了离子的利用率与集中状态[34-35]。然而, FIT 与 LIT 的耦合增加了结构与控制的复杂 性,对机械设计、电子设计、操作控制提出了更 高要求。

本工作拟在 KEK 研制的单势阱 FIT 基础上 提出具有双势阱的平面离子阱(double potential well flat ion trap, DPWFIT),结合离子光学模 拟研究工作的各个阶段,并分析影响其性能的 关键参数,提供一种能满足 MR-TOF 质量分析 器工作需求的离子收集与聚焦装置。

1 实验部分

1.1 双势阱平面离子阱的结构与工作原理

DPWFIT 由平行放置的 2 片平面电极组 构成(总长 45 mm、间距 4 mm),示于图 1a。 2 片平面电极组的电极上下对应全同且对称分 布(上平面电极组与下平面电极组的电极对应 同一编号,并标记"'"加以区分),每片平面电极 组包括 2 个条状电极(RF1/1′、RF2/2′,间距 4.2 mm)和 13 个块状电极(P1/1′~P13/13′),示于 图 1b,其中块状电极 P10/10′中心开孔作为离 子出口(孔径 1 mm)。向 2 片平面电极组内部 通入气体(通常为He)并维持在一定的气压下,

图 1 DPWFIT 的结构示意图(a)、 轴向截面及平面电极组的电极分布(b)、 径向截面及电场分布(c) Fig. 1 Schematic diagram of DPWFIT (a), axial cross-section with the flat arrangement for electrodes (b), and a radial cross-section

with the electric field distribution (c)

使离子碰撞冷却。DPWFIT 为变形的 LIT,各 条状电极施加相同的正弦射频,内部形成四极 电场用于离子的径向约束,示于图 1c。各块状 电极施加直流电压或双电平的方波脉冲形成周 期性变化的双势阱,示于图 2。

DPWFIT 工作涉及 4 个阶段:1) 离子收 集。外部离子连续进入 DPWFIT,与其中的气体 碰撞而损失动能,被第一势阱(P1/1'~P7/7')捕 获,维持 1 个工作周期,示于图 2a;2) 离子转 移。第一势阱与第二势阱(P7/7'、P13/13')间 联通为"单"势阱,收集的离子由第一势阱转移 至第二势阱,示于图 2b;3)离子冷却。双势阱 恢复,离子约束在第二势阱中,持续近 1 个工作 周期的碰撞冷却,示于图 2c;4) 离子抛出。出 口块状电极 P10 与 P10'的电压分开,将离子垂 直抛出,示于图 2d。

1.2 离子光学模拟

采用离子光学模拟软件 SIMION 8.1^[36]研究 DPWFIT 工作的 4 个阶段。

1.2.1 模型 模拟模型由代码编写、经求解生成,采用 0.1 mm/grid 网格划分可满足模拟所需的精度,示于图 3。DPWFIT 的尺寸及坐标与图 1 相同,并以离子入口作为坐标原点。为研究离子的进入与收集,在 DPWFIT 的离子入口前增加了"盲电极(Q1)-四极杆(Q2)-孔电极(Q3)"的离子传输结构。其中,Q2 杆长 20 mm、杆径 4 mm、圆周均布(内切圆直径 3.6 mm);Q3 厚度 1 mm、孔径 2 mm;Q1、Q2、Q3、DPW-FIT 之间依次相距 1 mm。此外,为研究离子的 抛出,FIT 的离子出口(P10)后增加了接收板(Acc),与 DPWFIT 相距 2.5 mm。

图 2 DPWFIT 在离子收集(a)、离子转移(b)、离子冷却(c)与离子抛出(d)阶段的轴向电势分布 Fig. 2 Axial potential distribution of DPWFIT for ion accumulation (a), ion transfer (b), ion cooling (c), and ion ejection (d)

图 3 SIMION 8.1 模拟的 DPWFIT 粒子轨迹 Fig. 3 Particle trajectories in DPWFIT simulated by SIMION 8.1

1.2.2 粒子初始设置 以 40 u、1 e 的阳离子 群(m/z 40)为研究对象,单次模拟的粒子数量 为 1 000 个,初始位置设置在 Q2 内部,并在 10 ms内逐个均匀诞生。引入离子间的库仑排 斥,设置单次模拟的电荷总量与权重因子,以分 配每个粒子代表的离子数量(除模拟 DPWFIT 离子容量外,均设置为 1)。由于存在气体缓冲, 粒子的运动轨迹对初始动量与能量不敏感,主要 受电场与气体的作用,设置粒子初始速度为 0。

1.2.3 气体设置 使用 SIMION 8.1 软件自 带的硬球碰撞模型程序(脚本文件: collision_ hs1. lua)控制粒子与气体的每次碰撞,在此基 础上增加气体的区域控制:1)离子传输结构与 DPWFIT 的内部,设置气体为 He、气压为 0.5 Pa、流速为 0(近似 FIT 的实际气体参数^[33-35]); 2) DPWFIT 离子出口至 Acc,设置气压为 0 (近似 MR-TOF 质量分析器超高真空的工作气 压)。由于 DPWFIT 内部的气压较低(平均自 由程约 4 mm),且径向尺寸较小(粒子抛出前 距出口 2 mm),粒子在抛出过程中与气体碰撞 的概率较低,因此忽略 DPWFIT 离子出口附近 的气体流场变化。

1.2.4 电压与模拟时间步长设置 采用自主 编写的 LUA 控制程序实现对各电极电压的设 置与控制。分别设置 Q1、Q2、Q3 的直流电压 为 3.0、2.0、1.0 V。DPWFIT 各块状电极(P1~ P13、P1'~P13')与 Acc 的电压受时序控制变 化,与工作的各阶段对应,具体情况列于表 1。 其中,离子冷却阶段的模拟采用 3 套 P7/7'~ P13/13'的电压设置,形成深度相近而宽度依次 收窄的第二势阱,分别编号为 I、Ⅱ、Ⅲ,以探究 势阱形状对离子冷却效果和抛出状态的影响。 此外,Q2 除直流偏置外,还分别施加两路相位 相反的正弦射频(5 MHz,300 Vm),电极 RF1、 RF2、RF1[']、RF2[']施加一路完全相同的正弦射 频(5 MHz、600 V_{pp},近似 FIT 的实际射频参 数^[33-35])。另外,为有效描述粒子受射频的影 响,设置模拟的最大时间步长为 20 ns(可有效 描述粒子与 0.5 Pa 气体的碰撞)。

1.2.5 数据 模拟得到粒子经"离子传输结构-DPWFIT-Acc"的运动轨迹,采用自主编写的 LUA 控制程序针对性地导出粒子在离子收集 后、离子转移中、离子抛出前、到达 Acc 时的飞行 时间、位置、速度、电势等信息,用于后续分析。

2 结果与讨论

2.1 离子收集

2.1.1 离子收集效率 离子收集效率(η_α)用 于表征 DPWFIT 第一势阱的离子收集能力,由 式(1)计算:

 $\eta_a =$ 第一势阱约束的粒子数 /

离子传输结构引入的粒子数 (1) 模拟得到 η_a 为 98%,在 10 ms 内逐个均匀诞生 的粒子几乎全部可以被第一势阱收集。1个工 作循环中, DPWFIT 的持续收集时间(T_a)可长达 10 ms。仅有的几个粒子损失发生在装置(Q2、 DPWFIT)衔接的Q3处,通过改进装置结构、工 作参数可将损失降低甚至消除,因非本工作研究 内容而不做讨论。此外,模拟发现,部分粒子因 冷却不充分、能量较高,在进入第一势阱后反向 流出,甚至跨过势垒进入第二势阱而干扰离子冷 却。因此,为保证足够的η,在模拟以及实际实 验中需合理调控离子传输结构电压以控制粒子 引入的能量,合理设置气压使粒子及时冷却而约 束在第一势阱中(同时需要考虑真空系统差分), 合理调控势垒高度以阻挡粒子进入第二势阱。

2.1.2 离子容量 因同电性离子间的库仑排 斥,势阱中约束的离子会阻碍外部离子进入,并 随约束离子的增加而增强。当外部离子无法继 续进入时,即达到饱和,约束的离子数量即为势 阱的离子容量。DPWFIT 第一、第二势阱的几 何尺寸相同,但第一势阱的深度更浅(以实现离 子转移)、离子容量更低。加之串联的工作模 式,第一势阱能约束的离子数量不少于第二势 阱。因此,第一势阱决定了 DPWFIT 每个周期 最多可承担的离子数量,其离子容量即 DPWFIT 的离子容量。

旪
τŊ
щ
Ē
琅
副
内 目 目
田田
び
慧
1 20
-
夷
117

Table 1 Electrode voltages in simulations

阶段	。 第 1						-	电极电压 Vo	oltage of ele	ctrode/V						
Step	Jenal number	P1/P1'	P2/P2'	P3/P3'	P4/P4'	P5/P5'	P6/P6'	P7/P7'	P8/P8'	P9/P9'	P10	P10'	P11/P11'	P12/P12'	P13/13'	Acc
收集		0	- 2	°	4	- 3	- 2	4	*	*	L —	2 —	*	*	4	0
转移		5	-2	- 3	—4	-4.5	- 5	-5.5	9 —	-6.5	2	2 —	*	*	4	0
冷却	Ι	7	-2	3	4	- 3	- 2	4	4	9 —	2	2 —	9 —	4	4	0
	П								0.3	-3.3			-3.3	0.3		
	Ш								ŝ	-1			-1	ŝ		
抛出		7	- 2	- 3	4	- 3	- 2	4	*	*	-150	150	*	*	4	-400

注:*同冷却阶段的电极电压设置

向已约束 1 000 个粒子的第一势阱继续注 入额外的 1 个离子,并改变 1 000 个粒子的总 电荷量(Q_{1000p})与代表的离子总量(N_i),通过分 析额外的 1 个离子进入第一势阱的情况,确认 DPWFIT 的离子容量。模拟发现,当 Q_{1000p} 较 低时,额外的 1 个离子可正常进入第一势阱;随 着 Q_{1000p} 逐渐增加,额外的 1 个离子受第一势阱 内粒子的排斥逐渐增大,进入速度逐渐减慢;当 $Q_{1000p}=3.0\times10^{-13}$ $C(N_i=1.9\times10^6$ 个)时,额 外的 1 个离子刚好无法进入第一势阱。DPWFIT 的离子容量上限为 1.9×10⁶ 个,符合其作为变 形的 LIT 而具有高离子容量的特点^[37-38]。

2.2 离子转移

第一、第二势阱间联通为"单"势阱后,由于 设置电压 P4/4[']大于 P10/10['],粒子由第一势阱 向第二势阱转移,离子转移效率(η_i)达 100%, 由式(2)计算:

 $\eta_{t} =$ 转移后第二势阱约束的粒子数 /

转移前第一势阱收集的粒子数 (2) 因 P4/4'至 P10/10'的加速,粒子在到达第 二势阱后通常会向第一势阱折返,经几个周期 的阻尼振荡最终稳定在第二势阱中(平均位置: $\bar{x}_t=31 \text{ mm}, \bar{y}_t=0 \text{ mm}, \bar{z}_t=0 \text{ mm}),示于图 4.$ $当转移时间 <math>T_t=41 \mu \text{s}$ 时,粒子第一次全部转 移至第二势阱,但由于能量较高,仍会向第一势 阱折返;当 $T_t=56 \mu \text{s}$ 时,粒子第二次全部转移 并持续停留至第二势阱中,达到了充分转移。 此外,转移显然受 P4/4'、P10/10'间电压差的 影响,电压差越大,转移速度越快。因此,在模

拟以及实际实验中,需采用合理的时序确保粒 子的充分转移,同时合理设置 P4/4'~P10/10' 的电压,以控制粒子转移速度。

2.3 离子冷却与离子抛出

虽然粒子在离子传输结构中,以及离子收 集、离子转移阶段均与气体碰撞冷却,但由于冷 却时长的不可控、离子转移过程的加速,粒子需 要进一步在第二势阱中经历时间可控且充分冷 却后再从 DPWFIT 中抛出。

2.3.1 冷却时间的影响 模拟采用Ⅱ的第二 势阱电压设置,研究冷却时间(*T*_c)对离子冷却 和离子抛出效果的影响,模拟结果列于表 2。

离子约束效率(η_c)示于式(3):

 $\eta_{c} =$ 第二势阱约束的粒子数 /

第二势阱引入的粒子数 (3)

离子约束效率(η_c)随 T_c 增加而缓慢线性 降低 ($\eta_c = 1.0 - 0.013 T_c / T_0$, $T_0 = 1 \text{ ms}$, $R^2 =$ 0.99)。在 $T_{c} = 10 \text{ ms}$ 时,仍能维持 $\eta_{c} = 86\%$,表 明 DPWFIT 具有长期且稳定约束离子的能力。 离子冷却开始后,约束粒子的平均位置(\bar{x}_{c}, \bar{v}_{c}) \bar{z}_{e})由离子转移后达到的稳定位置(\bar{x}_{t} =31 mm、 $\bar{y}_t = 0 \text{ mm} \sqrt{z}_t = 0 \text{ mm}$)沿轴向移动, 10 µs 内便 稳定于势阱的极小值点(P10 与 P10'之间的中 点, $\bar{x}_c = 33 \text{ mm}$ 、 $\bar{y}_c = 0 \text{ mm}$ 、 $\bar{z}_c = 0 \text{ mm}$),之后基 本不随 T。变化。由于前期冷却的不充分以及离 子转移过程的加速,约束粒子具有初始-2.9 eV 的平均能量(\overline{E}_{c})以及 1.4 eV 的能量标准偏差 (*σ*_{Ec}),并对应一定的位置分散(位置标准偏差: $\sigma_{\rm xc} = 2.0 \, {\rm mm}_{2} \sigma_{\rm yc} = 0.11 \, {\rm mm}_{2} \sigma_{\rm zc} = 0.18 \, {\rm mm}_{2}$ 通过与气体碰撞,约束粒子的能量降低、位置集 中, \overline{E}_{c} 、 σ_{Ec} 、 σ_{xc} 均随 T_{c} 增加而迅速下降,并于 $1 ms后保持稳定; 而 \sigma_{vc}, \sigma_{zc}$ 则因冷却聚集与库 仑排斥的相反影响,随T。变化较小。约束粒 子团在 $T_c = 1$ ms 后达到充分冷却,具有直径 $d_{\rm xc} = 6\sigma_{\rm xc} = 1.4 \text{ mm}, d_{\rm yc} = 6\sigma_{\rm yc} = 0.57 \text{ mm}, d_{\rm zc} =$ $6\sigma_{zc}=1.0 \text{ mm}, \overline{E}_{c}=-4.1 \text{ eV}, 以及 \sigma_{Ec}=0.12 \text{ eV}.$

模拟采用抛出粒子到达 Acc 处(z=4.5 mm) 的数据分析离子抛出的效果。在模拟参数下, 抛出时间(T_e)约为 0.23 μs。除抛出前的冷却 状态外,离子抛出效果还受其他 3 个方面的影 响:1) 抛出过程中的气体碰撞。粒子与气体在 抛出过程中的碰撞仅与气压、电压相关,虽然造 成额外的位置分散、能量分散、角度分散,但基 本不随 T。变化;2) 离子出口的限制。离子出 口有限的尺寸 $(d_{a}=1.0 \text{ mm})$ 会阻碍位置偏移 较大的粒子通过, $d_{xc} = 6\sigma_{xc}$ 、 $d_{yc} = 6\sigma_{yc}$ 与d。的相 对大小基本决定了离子抛出效率(η_e),由式(4) 计算。因此,对应 T_c 对 σ_{xc} 、 σ_{yc} 的影响, η_e 表现 为随 T_{c} 增加而迅速上升,并于 $T_{c}=1$ ms 后保 持稳定。而经过离子出口的"过滤", 抛出粒子 的平均位置固定在离子出口的中心($\bar{x}_e = 33 \text{ mm}$ 、 $\bar{y}_e = 0$ mm),基本不受 T_e 的影响;3) P10 与 P10′的推斥电压。P10 与 P10′的推斥电压在 z 方向产生电势梯度,对不同位置赋予不同势能, 造成约束粒子在z方向的位置分散,产生额外 的能量分散。因此,综合 T_c 对 σ_{zc} 和 σ_{Ec} 的影 响, 抛出粒子的能量标准偏差(σ_{F_a})表现为随 T_a 增加而迅速下降,并于 $T_c=1$ ms 后保持稳定。 此外,抛出粒子的位置标准偏差(oxe、oye)、角度 标准偏差($\sigma_{xxe}, \sigma_{yxe}$)则主要与抛出前的冷却 状态相关, 随 T。增加而迅速下降, 并于 T。= 1 ms后保持稳定。抛出粒子束的状态在 $T_c =$ 1 ms后基本达到稳定,具有直径 $d_{xe} = 6\sigma_{xe} = 1.0$ mm, $d_{ve} = 6\sigma_{ve} = 1.0$ mm, $\sigma_{Ee} = 15$ eV, $\sigma_{xe} =$ 24 mrad, $\sigma_{/\rm yze} = 16$ mrad.

 $\eta_{\rm e} = 到达 \operatorname{Acc}$ 的粒子数 /

抛出前第二势阱约束的粒子数 (4) 2.3.2 势阱形状的影响 模拟采用Ⅰ、Ⅱ、Ⅲ 的 P7/7′~P13/13′电压设置,分别形成深度相 近而宽度各异的 u 形、v 形、r 形第二势阱,并固 定 *T*。=1 ms,以确保充分的离子冷却,探究势 阱形状对离子冷却和离子抛出效果的影响,模 拟结果列于表 3。

u形、v形、r形第二势阱的宽度依次收窄, 其离子容量依次减小,当容纳的离子数量相同时,离子分布依次集中而离子间库仑排斥依次 增大,因此 η_c 、轴向分散($\sigma_{xc}, \sigma_{xc}, \sigma_{\angle xze}$)依次降低,而 η_e 、径向分散($\sigma_{yc}, \sigma_{xc}, \sigma_{ye}, \sigma_{ze}$)、能量分散 (σ_{Ec}, σ_{Ec})依次升高。相比极端的 u形、r形, v形的第二势阱兼具了足够的 η_c (98%)与 η_c (98%),并同时实现相对较低的轴向、径向以及能量分散,能够满足抛出通量高、状态集中离子的应用需求。

2.4 性能分析

2.4.1 与 FIT 的对比 DPWFIT、FIT 之间 最显著的差别是势阱数量的不同:DPWFIT 存

在2个势阱,而FIT 仅具有单个势阱,因此其 工作原理不同。对于 DPWFIT,离子由第一势 阱收集,再转移至第二势阱,并在第二势阱中依 次实现冷却、抛出的1个工作循环,2个势阱几 平独立,可分别并同时进行相邻离子束的收集 与冷却或抛出,示于图 5a。而对于 FIT,仅由 唯一的势阱依次实现离子收集、离子冷却、离子 抛出的1个工作循环,示于图5b。上述区别导 致其性能的2项差异:1)离子收集。DPWFIT 的第一势阱仅用于离子收集,能够在不受其他 阶段干扰的情况下连续进行,时间占比可达 100%;而 FIT 的离子收集需要与离子冷却、离 子抛出共同分配有限的工作周期,时间占比必 然小于 100%。因此, DPWFIT 对离子的收集 更加充分,更适用于以核物理为主要应用领域 的 MR-TOF 质量分析器(作为分析对象的离 子,通常制备成本高昂日通量较低);2)离子冷 却。与离子收集类似, DPWFIT 的离子冷却时 间接近1个工作周期(离子转移时间、离子抛出 时间均极短),时间占比接近100%,大于FIT 的离子冷却时间占比。若工作周期相同, DPWFIT较 FIT 具有更长的离子冷却时间,可 获得更好的离子冷却效果;若离子冷却时间相 同,DPWFIT 较 FIT 具有更短的工作周期,可 在单位时间内获得信噪比更高的测量结果。

2.4.2 与 MR-TOF 质量分析器的适配性 与 MR-TOF 质量分析器耦合并满足工作需求是 DPWFIT 作为离子收集与聚焦装置的关键。 基于模拟结果,从3个方面具体分析 DPWFIT 与 MR-TOF 质量分析器的适配性:1) 工作周 期。DPWFIT工作的4个阶段的时间分配,其 工作周期 $T_{\text{DPWFIT}} = T_a = T_t + T_c + T_e$,示于 图 5a。因为 $T_c \gg T_t$ 、 T_e ,所以 $T_{DPWFIT} = T_a \approx$ T_{c} 。模拟发现,1个工作循环中,DPWFIT能 够持续地收集离子或稳定地约束离子长达 10 ms, 而充分冷却时间仅为1 ms。DPWFIT 工作周期的最大值 $T_{\text{DPWFIT}} = T_{a} \approx T_{c} \ge 10 \text{ ms},$ 最小值 $T_{\text{DPWFIT}} \approx T_{\text{c}} = 1 \text{ ms}$,可充分匹配 MR-TOF 质量分析器约 10 ms 的工作周期;2) 离 子通量。模拟发现,DPWFIT 具有极高的离子 容量,其上限为1.9×10⁶个。而由于各阶段均 存在一定的离子损失,DPWFIT 的总离子传输 效率 $\eta_{\text{DPWFIT}} = \eta_a \times \eta_t \times \eta_c \times \eta_e = 83\%$,离子通量

Ē
t T
-1XX
번
批
M-
遯
문
Ë
#N へへ
×
Μ
遯
玓
Ř
÷
曹
स्म
钬
回
К
•••
2
夷
ηζ

ont cooling time undon diffo. realing and ion election of ion 5 ď Table 3

			Iaute	2 FELIOFIIIAL	ICES OF TOTI COO	ung anu ion e	section under	unterent coom	ng ume			
			离子冷却	Ion cooling					离子抛出 1	on ejection		
回扫叶剑			位置标准偏差			能量		位置标	隹偏差	能量	角度标?	隹 偏差
тर арну ну Сооling	约束效率		Standard		平均能量	标准偏差	抛出效率	Stand	lard	标准偏差	Stanc	lard
time	Efficiency		deviation		Average	Standard	Efficiency	devia	tion	Standard	devia	tion
$(T_c)/ms$	of trapping	0	of position/mm		energy	deviation	of ejection	of position	mm/nc	deviation	of radia	1/mrad
	$(\eta_{c})/\%$ -	đ _{xc}	dyc	$\sigma_{ m zc}$	$(E_c)/eV$	of energy ($\sigma_{ m Ec}$)/eV	$(\eta_e)/\%$	đ _{xe}	$\sigma_{ m ye}$	of energy – ($\sigma_{\rm Ee}$)/eV	σ∠xze	σ∠yze
0	100	2. 0×10^{0}	1.1×10^{-1}	1.8×10^{-1}	-2.9×10^{0}	1.4×10^{0}	28	8. 2×10^{-1}	2. 2×10^{-1}	3. 9×10^{1}	1.7×10^{2}	3.8 $\times 10^{1}$
0.010	100	$1.5 imes 10^{\circ}$	$1.2 imes 10^{-1}$	2. 0×10^{-1}	-3.4×10^{0}	8. 1×10^{-1}	47	3.8×10 ⁻¹	2. 1×10^{-1}	3. 0×10^{1}	7.9 $\times 10^{1}$	2.8 $\times 10^{1}$
0.050	66	4.2 $\times 10^{-1}$	9.9 $\times 10^{-2}$	2. 0×10^{-1}	-4.0×10^{0}	1.9×10^{-1}	82	2. 0×10^{-1}	1.7×10^{-1}	1.8 $\times 10^{1}$	3. 0×10^{1}	1. 7×10^{1}
0.50	66	2. 3×10^{-1}	9. 4×10^{-2}	1.8 $\times 10^{-1}$	-4.1×10^{0}	1.3×10^{-1}	98	1. 7×10^{-1}	1.7×10^{-1}	1. 7×10^{1}	2. 4×10^{1}	1. 7×10^{1}
1.0	98	2. 3×10^{-1}	9.5 $\times 10^{-2}$	1. 7×10^{-1}	-4.1×10^{0}	1.2×10^{-1}	98	1. 7×10^{-1}	1.7×10^{-1}	1. 5×10^{1}	2. 4×10^{1}	1. 6×10^{1}
5.0	93	2. 3×10^{-1}	9. 3×10^{-2}	1.8 $\times 10^{-1}$	-4.1×10^{0}	1.2×10^{-1}	98	1. 7×10^{-1}	1.7×10^{-1}	1. 6×10^{1}	2. 4×10^{1}	1. 7×10^{1}
10	87	2. 3×10^{-1}	8.8 $\times 10^{-2}$	1.8 $\times 10^{-1}$	-4.1×10^{0}	$1.0 imes 10^{-1}$	98	1. 7×10^{-1}	1. 6×10^{-1}	1. 6×10^1	2. 4×10^{1}	1. 6×10^1
		-	Table 3 Perfe	表 3 ormances of io	不同势阱形 m cooling and	状下的离子 ^炎 ion ejection u	o劫和离子抛! under different	出效果 shapes of axia	al potential we	=		
			离子冷却	Ion cooling					离子抛出 1	on ejection		
第二 势 形状	约束效率 Efficiency		位置标准偏差 Standard		平均能量 Average	能量 标准偏差 Standard	抛出效率 Fifficiency	位置标? Stand	隹偏差 lard	能量 标准偏差 Standard	角度标? Stanc	隹徧差 lard tion
The second well shape	of trapping	0	of position/mm		energy	deviation	of ejection	of positio	mm/nc	deviation	of radiar	ı√mrad
	$(\eta_c)/\%$ -	σ _{xc}	d _{yc}	σ_{zc}	$(E_c)/eV$	of energy $(\sigma_{ m Ec})/eV$	$(\eta_{\rm e})/\%$	σ _{xe}	$\sigma_{ m ye}$	of energy - (σ _{Ee})/eV	¢∠xze	đ∠yze
n	66	4. 2×10^{-1}	8. 9×10^{-2}	1.5×10^{-1}	-4.1×10^{0}	1.2×10^{-1}	81	2. 0×10^{-1}	1. 6×10^{-1}	1.5×10^{1}	2. 9×10^{1}	1.7 $\times 10^{1}$
Λ	98	2. 3×10^{-1}	9.5 $\times 10^{-2}$	1.7×10^{-1}	-4.1×10^{0}	1.2×10^{-1}	98	1. 7×10^{-1}	1. 7×10^{-1}	1. 5×10^1	2. 4×10^{1}	1. 6×10^{1}

 1.7×10^{1}

2.2 $\times 10^{1}$

2. 0×10^1

 1.8×10^{-1}

 1.5×10^{-1}

100

 1.7×10^{-1}

 -4.1×10^{0}

2. 3×10^{-1}

9.8 $\times 10^{-2}$

 1.8×10^{-1}

63

> ч

Fig. 5 Timing arrangement of steps to run DPWFIT (a) and FIT (b)

的最大值 $N_{\text{DPWFIT}} = N_{\text{i}} \times \eta_{\text{t}} \times \eta_{\text{c}} \times \eta_{\text{e}} = 1.6 \times 10^6$ 个(对于 v 形的第二势阱, $T_c = 10 \text{ ms}$)。为保 证超高的质量分辨率, MR-TOF 质量分析器需 要尽可能地降低内部离子间的库仑排斥,每周 期分析的离子数量通常很少(有时甚至仅几个 离子)^[16], DPWFIT 的离子容量可充分满足 MR-TOF 质量分析器的实际需要;3) 离子状 态。MR-TOF 质量分析器通常要求引入离子 的直径为1×10°mm数量级、角度标准偏差为 1×10^1 mrad 数量级、能量标准偏差为 $1 \times$ 10¹ eV数量级。模拟得到的 DPWFIT 抛出粒 子束直径为 1.0 与 1.0 mm、能量标准偏差为 15 eV,均符合 MR-TOF 质量分析器的需求。 而模拟得到的 DPWFIT 抛出粒子束的角度标 准偏差为 24 mrad 与 16 mrad,可在粒子束进 入 MR-TOF 质量分析器前,因加速而进一步降 低(如粒子束加速至5000 eV,角度标准偏差降 低为 6.8 mrad 与 4.5 mrad),符合 MR-TOF 质量分析器对引入离子角度标准偏差的要求。 此外, DPWFIT 与 MR-TOF 质量分析器间通 常设有离子透镜对离子束聚焦,继续降低离子 束的位置分散、角度分散。综上,在工作周期、 离子通量、离子状态这3个方面,DPWFIT均 能很好地耦合 MR-TOF 质量分析器,并满足工 作需求。

3 结论

本工作提出了一种基于平面结构、具有双势阱的 LIT 设计,即 DPWFIT,其 2 个势阱几 乎独立且可同时工作,第一势阱用于实现连续 的离子收集,第二势阱用于接近 1 个工作周期 的离子冷却以及快速的离子抛出。相比于仅能 间断收集离子且离子冷却仅占部分工作周期的 单势阱 FIT,DPWFIT 对离子的收集与聚焦更 加充分,以简单结构与控制提供了通量更高、状 态更集中的引入离子。

基于 SIMION 8.1 的离子光学模拟,研究 了 DPWFIT 工作的 4 个阶段。在 0.5 Pa 冷却 He、近 10 V势阱的设置下,模拟得到:1) 离子 收集效率为98%,可持续运行至少10 ms,离子 容量上限达 1.9×10⁶ 个;2) 离子转移以阻尼 振荡的形式实现,效率可达100%,充分转移时 间为 56 μs;3) 离子冷却效果受时间的影响,效 率随时间增加而缓慢线性降低,10 ms 后仍有 86%。约束粒子团在1.0 ms 后达到充分冷却, 具有 1.4、0.57、1.0 mm 的三维直径, -4.1 eV 的能量,以及 0.12 eV 的能量标准偏差;4) 离 子抛出效果受抛出前粒子的冷却效果、抛出过 程中的气体碰撞、离子出口的有限尺寸、P10与 P10′推斥电压的影响,而且随冷却时间变化。 抛出粒子束在冷却时间 1.0 ms 后达到稳定,具 有 1.0、1.0 mm 的径向 直径,24、16 mrad的角 度标准偏差,以及 15 eV 的能量标准偏差。此 外,离子冷却效果、离子抛出效果也受势阱形状 的影响,相比 u 形、r 形,v 形的第二势阱更能满 足抛出通量高、状态集中离子的应用需求。基 于上述结果,进一步得到 DPWFIT 的工作周期 可从1ms延长至超过10ms、总离子传输效率为 83%、离子通量上限达 1.6×10⁶ 个。

DPWFIT 能够满足 MR-TOF 质量分析器 在工作周期(约 10 ms)、离子通量(通常很少, 有时甚至仅几个离子)、离子状态(直径 1×10° mm 数量级、角度标准偏差 1×10¹ mrad 数量 级、能量标准偏差 1×10¹ eV 数量级)等方面的 工作需求,可作为离子收集与聚焦装置为 MR-TOF 质量分析器提供通量高、状态集中的引入 离子。本工作为 DPWFIT 的实际开发与应用 提供了原理支持,可推动 MR-TOF 质量分析器 的发展。

参考文献:

- [1] RADIONOVA A, FILIPPOV I, DERRICK P J. In pursuit of resolution in time-of-flight mass spectrometry: a historical perspective[J]. Mass Spectrometry Reviews, 2016, 35(6): 738-757.
- [2] 李玉泽,聂宗秀,袁震.小型飞行时间质谱装置的构建[J].质谱学报,2020,41(2):147-152.
 LI Yuze, NIE Zongxiu, YUAN Zhen. Design of a compact type time-of-flight mass spectrometer
 [J]. Journal of Chinese Mass Spectrometry Society, 2020, 41(2): 147-152(in Chinese).
- [3] 杨芃原,李顺祥,贾滨,刘颖超,朱晨鑫,刘凯,赵 和玉.飞行时间质谱和高性能电子学控制技术
 [J].质谱学报,2020,41(1):1-10.

YANG Pengyuan, LI Shunxiang, JIA Bin, LIU Yingchao, ZHU Chenxin, LIU Kai, ZHAO Heyu. Progress on time-of-flight mass spectrometry and high-performance electronics control technology[J]. Journal of Chinese Mass Spectrometry Society, 2020, 41(1): 1-10(in Chinese).

- [4] BOESL U. Time-of-flight mass spectrometry: introduction to the basics[J]. Mass Spectrometry Reviews, 2017, 36(1): 86-109.
- [5] 刘陈瑶,韩方源,唐彬,罗宗昌,梁沁沁,朱立平, 张洁明.冷阱-光电子电离飞行时间质谱检测痕 量 SF₆ 气体分解产物[J].质谱学报,2019,40 (6):510-517.

LIU Chenyao, HAN Fangyuan, TANG Bin, LUO Zongchang, LIANG Qinqin, ZHU Liping, ZHANG Jieming. Development of a cold trapphotoelectron ionization time-of-flight mass spectrometer for detection of trace SF₆ gas decomposition products[J]. Journal of Chinese Mass Spectrometry Society, 2019, 40(6): 510-517(in Chinese).

[6] BLUMLING D E, SAYRES S G, CASTLE-MAN A W. Strong-field ionization and dissociation studies on small early transition metal carbide clusters via time-of-flight mass spectrometry [J]. The Journal of Physical Chemistry A, 2011, 115(20): 5 038-5 043.

- LIU X, ZHANG J, VAZQUEZ A, WANG D,
 LI S. Mechanistic study of thermal decomposition of hexamethyldisilane by flash pyrolysis vacuum ultraviolet photoionization time-of-flight mass spectrometry and density functional theory
 [J]. The Journal of Physical Chemistry A, 2019, 123(49): 10 520-10 528.
- [8] 黄建鹏,贺玖明,朱辉,李铁钢,黄正旭,莫婷,李 梅. 国产高分辨飞行时间质谱仪在药物分子结 构鉴定中的应用[J]. 质谱学报,2016,37(5): 431-439.

HUANG Jianpeng, HE Jiuming, ZHU Hui, LI Tiegang, HUANG Zhengxu, MO Ting, LI Mei. Analysis of pharmaceutical molecules for structure identification by domestic high resolution time-of-flight mass spectrometer[J]. Journal of Chinese Mass Spectrometry Society, 2016, 37 (5): 431-439(in Chinese).

- [9] SHAO J, WAN Z, LI R, YU J. Advances in matrix-assisted laser desorption/ionization timeof-flight mass spectrometry applying in the field of medical Fung[J]. Mygosystema, 2019, 38 (8): 1 277-1 286.
- [10] WENG R, LOU S, PANG X, SONG Y, SU X, XIAO Z, QIU J. Multi-residue analysis of 126 pesticides in chicken muscle by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry[J]. Food Chemistry, 2020, 309: 125 503.
- [11] 刘占芳,李斌,徐建中,孙振文,周红,孙玉友,欧 阳伟民. 谱图准确度在高分辨飞行时间质谱分 析有机炸药中的应用[J]. 质谱学报,2014,35 (6):544-549.

LIU Zhanfang, LI Bin, XU Jianzhong, SUN Zhenwen, ZHOU Hong, SUN Yuyou, OUY-ANG Weimin. Application of spectra accuracy to analysis of organic explosives by time-of-flight mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2014, 35(6): 544-549(in Chinese).

[12] LIU Z F, XU B, SUN Z W, SUN Y Y, ZHOU H, ZHU J, XU J Z, DUAN X K, LIU C C. Identification of nitro explosives by direct analysis in real-time time-of-flight mass spectrometry [J]. Analytical Letters, 2017, 50(14): 2 234-2 245.

- [13] WOLLNIK H, PRZEWLOKA M. Time-offlight mass spectrometers with multiply reflected ion trajectories[J]. International Journal of Mass Spectrometry and Ion Processes, 1990, 96(3): 267-274.
- [14] YAVOR M I, POMOZOV T V, KIRILLOV S N, KHASIN Y I, VERENCHIKOV A N. High performance gridless ion mirrors for multi-reflection time-of-flight and electrostatic trap mass analyzers[J]. International Journal of Mass Spectrometry, 2018, 426: 1-11.
- [15] ROSENBUSCH M, WADA M, SCHURY P, ITO Y, ISHIYAMA H, ISHIZAWA S, HIRAYAMA Y, KIMURA S, KOJIMA T M, MIYATAKE H, MOON J Y, NIWASE T, SONODA T, TAKAMINE A, WATANABE Y X, WOLLNIK H. A new multi-reflection timeof-flight mass spectrograph for the SLOWRI facility[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2020, 463; 184-188.
- [16] KULIKOV I, ALGORA A, ATANASOV D, ASCHER P, BLAUM K, CAKIRLI R B, HER-LERT A, HUANG W J, KARTHEIN J, LITVINOV Y A, LUNNEY D, MANEA V, MOUGEOT M, SCHWEIKHARD L, WELK-ER A, WIENHOLTZ F. Masses of short-lived ⁴⁹ Sc, ⁵⁰ Sc, ⁷⁰ As, ⁷³ Br and stable ¹⁹⁶ Hg nuclides [J]. Nuclear Physics A, 2020, 1 002; 121 990.
- [17] SAVARD G, BRODEUR M, CLARK J A, KNAACK R A, VALVERDE A A. The N = 126 factory: a new facility to produce very heavy neutron-rich isotopes[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2020, 463: 258-261.
- [18] SMITH M B, MURBOCK T, DUNLING E, JACOBS A, KOOTTE B, LAN Y, LEISTEN-SCHNEIDER E, LUNNEY D, LYKIARDO-POULOU E M, MUKUL I, PAUL S F, REIT-ER M P, WILL C, DILLING J, KWIATKOWS-KI A A. High-precision mass measurement of neutron-rich ⁹⁶ Kr[J]. Hyperfine Interactions, 2020, 241(1): 59.

- [19] GUILHAUS M. Principles and instrumentation in time-of-flight mass spectrometry-physical and instrumental concepts[J]. Journal of Mass Spectrometry, 1995, 30(11): 1 519-1 532.
- [20] IOANOVICIU D. Ion-optical solutions in timeof-flight mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 1995, 9 (11): 985-997.
- [21] VESTAL M L. Modern MALDI time-of-flight mass spectrometry[J]. Journal of Mass Spectrometry, 2009, 44(3): 303-317.
- [22] GRINFELD D, GIANNAKOPULOS A E, KO-PAEV I, MAKAROV A, MONASTYRSKIY M, SKOBLIN M. Space-charge effects in an electrostatic multireflection ion trap[J]. European Journal of Mass Spectrometry, 2014, 20(2): 131-142.
- [23] PIECHACZEK A, SHCHEPUNOV V, CART-ER H K, BATCHELDER J C, ZGANJAR E F, LIDDICK S N, WOLLNIK H, HU Y, GRIF-FITH B O. Development of a high resolution isobar separator for study of exotic decays[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2008, 266(19/20): 4 510-4 514.
- [24] MAIER F M, FISCHER P, HEYLEN H, LAGAKI V, LECHNER S, PLATTNER P, SELS S, WIENHOLTZ F, NÖRTERSHÄUSER W, SCHWEIKHARD L, MALBRUNOT-ETTENAUER S. Simulations of a proof-of-principle experiment for collinear laser spectroscopy within a multi-reflection time-of-flight device[J]. Hyperfine Interactions, 2019, 240(1): 54.
- [25] YAVOR M, VERENTCHIKOV A, HASIN J, KOZLOV B, GAVRIK M, TRUFANOV A. Planar multi-reflecting time-of-flight mass analyzer with a Jig-Saw ion path[J]. Physics Procedia, 2008, 1(1): 391-400.
- [26] WANG J Y, TIAN Y L, WANG Y S, GAN Z G, ZHOU X H, XU H S, HUANG W X. A multi-reflection time-of-flight mass analyzer at IMP/CAS[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2020, 463: 179-183.
- [27] PLA W R, DICKEL T, CZOK U, GEISSEL H, PETRICK M, REINHEIMER K, SCHEIDEN-BERGER C I, YAVOR M. Isobar separation by

time-of-flight mass spectrometry for low-energy radioactive ion beam facilities[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2008, 266 (19/20): 4 560-4 564.

- [28] WIENHOLTZ F, ATANASOV D, KREIM S, MANEA V, ROSENBUSCH M, SCHWEIKHARD L, WELKER A, WOLF R N. Towards ultrahigh-resolution multi-reflection time-of-flight mass spectrometry at ISOLTRAP[J]. Physica Scripta, 2015, doi: 10.1088/0031-8949/2015/ T166/014068.
- [29] SCHURY P, WADA M, ITO Y, NAIMI S, SONODA T, MITA H, TAKAMINE A, OKADA K, WOLLNIK H, CHON S, HABA H, KAJI D, KOURA H, MIYATAKE H, MORIMOTO K, MORITA K, OZAWA A. A multi-reflection time-of-flight mass spectrograph for short-lived and super-heavy nuclei[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 317: 537-543.
- [30] DICKEL T, PLAB W R, BECKER A, CZOK U, GEISSEL H, HAETTNER E, JESCH C, KINSEL W, PETRICK M, SCHEIDENBERG-ER C, SIMON A, YAVOR M I. A high-performance multiple-reflection time-of-flight mass spectrometer and isobar separator for the research with exotic nuclei[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 777: 172-188.
- [31] VERENTCHIKOV A N. Multireflection planar time-of-flight mass analyzer. I: an analyzer for a parallel tandem spectrometer[J]. Technical Physics, 2005, 50(1): 73-81.

- [32] YAVOR M I, PLA W R, DICKEL T, GEISSEL H, SCHEIDENBERGER C. Ion-optical design of a high-performance multiple-reflection time-offlight mass spectrometer and isobar separator
 [J]. International Journal of Mass Spectrometry, 2015(381/382): 1-9.
- [33] SCHURY P, OKADA K, SHCHEPUNOV S, SONODA T, TAKAMINE A, WADA M, WOLLNIK H, YAMAZAKI Y. Multi-reflection time-of-flight mass spectrograph for short-lived radioactive ions[J]. The European Physical Journal A, 2009, 42(3): 343-349.
- [34] ITO Y, SCHURY P, WADA M, NAIMI S, SMORRA C, SONODA T, MITA H, TAKA-MINE A, OKADA K, OZAWA A, WOLLNIK H. A novel Ion cooling trap for multi-reflection time-of-flight mass spectrograph[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 317: 544-549.
- [35] SCHURY P, ITO Y, ROSENBUSCH M, MIYATAKE H, WADA M, WOLLNIK H. Improving wide-band mass measurements in a multi-reflection time-of-flight mass spectrograph by usage of a concomitant measurement scheme [J]. International Journal of Mass Spectrometry, 2018, 433: 40-46.
- [36] SIMION, Version 8.1[CP]. Scientific Instrument Services, Inc. TM: 2011.
- [37] DOUGLAS D J, FRANK A J, MAO D. Linear ion traps in mass spectrometry[J]. Mass Spectrometry Reviews, 2005, 24(1): 1-29.
- [38] MARCH R E. Quadrupole ion traps[J]. Mass Spectrometry Reviews, 2009, 28(6): 961-989. (收稿日期:2022-03-09;修回日期:2022-04-22)