Journal of Chinese Mass Spectrometry Society

罗布麻叶挥发油的气相色谱-质谱分析

范维刚、解成喜*、李锋、李新龙

(新疆大学理化测试中心, 新疆 乌鲁木齐 830046)

摘要: 用挥发油提取器提取了罗布麻叶中挥发油, 测得含量为w=0 02%。并采用气相色谱-质谱联用技术对罗布麻的挥发性成分进行了分离鉴定。 分离出 52 种成分, 共确认了其中 25 种成分, 占挥发油总含量的 85 38%。 采用峰面积归一化法确定了各成分的相对含量, 其中主要成分为氧化石竹烯(10 57%)、1- α -萜品醇(10 38%),苯甲酸-3-己烯酯(6 45%)、3, 7, 11, 15-四甲基-2-十六碳烯-1-醇(5 99%)、大马酮(5 85%)、反式-金合欢醇(5 27%)、2-甲基-5-异丙基苯酚(4 77%)、长叶薄荷酮(4 25%)。

关键词: 挥发油: 气相色谱-质谱(GC M S): 罗布麻叶

中图分类号: O 657. 63; O 949. 776. 5 文献标识码: A 文章编号: 1004-2997 (2005) 02-93-03

Analysis of Volatile O il From Apocynum venetum L. by Gas Chromatography-Mass Spectrometry

FAN Weirgang, XIE Chengrai*, LIFeng, LIXin-long (Physical and Chenical Analysis Center, Xinjing University, Urum qi 830046, China)

Abstract The volatile oil was extracted from *A p ocynum venetum* L. by using extracted device of volatile oil The content of the volatile oil was 0 02%. The chemical components of the volatile oil were examined by gas chromatographymass spectromentry (GC/MS), 52 constituents were separated and 25 compounds were identified. The identified compounds consitute more than 85, 38% of the total ion current. The relative content of the components were determined with peak area normalization method, the major constituents of the volatile oil are caryophyllene-oxide (10, 57%), 1-octemineol (10, 38%), 3-hexen-1-olben-zoate (6, 45%), 3, 7, 11, 15-tetramethyl-2-hexadecen-1-ol (5, 99%), β -dam ascenone (5, 85%), trans-farnesol (5, 27%), 2-methyl-5-(1-methylethyl) phenol (4, 77%), pulegeone (4, 25%).

Key words: volatile oil; gas chrom atography m ass spectromentry; A pocynum venetum L.

收稿日期: 2004-07-12; 修回日期: 2004-11-10

作者简介: 范维刚(1975~), 男(汉族), 新疆米泉人, 在读硕士研究生, 主要从事天然药物方面的研究。 E-mail: fan-weigang2000@yahoo. com. cn

^{*}通讯作者: 解成喜(1953~), 男(汉族), 副教授, 主要从事分析化学工作。 E-mail: xiecx@xju edu cn

罗布麻又叫野麻 茶叶花 分为红麻 白麻两 种, 属夹竹桃科 (A p ocy num) 多年生半灌木。耐 旱 耐盐碱 耐严寒和酷暑, 广泛生长在盐碱 沙 荒地带, 集中在新疆, 内蒙, 甘肃, 青海等省区, 因 最早发现干新疆罗布泊, 故命名为罗布麻[1,2]。罗 布麻内含黄酮类化合物、强心苷、生物碱、氨基酸 和多种微量元素(如 K、Ca、Fe、Zn 等), 对预防和 治疗高血压 高血脂 冠心病 哮喘病 气管炎等 疾病有较好的效果[3,4]。罗布麻的根、叶还有抗过 敏 抗癌 抗辐射及抗衰老等作用。中医入药,用 作清热降火,平肝熄风,主治头痛,脑晕,失眠等 症[5,6]。罗布麻挥发油的化学成分及质量受产地 品种 生长环境 栽培变异等因素影响较大。目 前,多采用常规水蒸气蒸馏法提取挥发油。本工 作拟采用国家药典规定的标准仪器及方法对新 疆库尔勒产罗布麻进行挥发油提取, 并用气相色 谱-质谱法(GC/MS)测定其化学成分。

1 实验部分

1 1 主要仪器与装置

5988A 气相色谱-质谱联用仪: 美国惠普 (Hew lett-Packard) 公司产品; 磨口挥发油提取器: 根据国家药典规定制造。

1.2 主要样品与试剂

罗布麻叶: 产于新疆库尔勒; 无水硫酸钠: 分析纯: 蒸馏水。

1.2 挥发油的提取

罗布麻叶粉末 500 g 置于烧瓶中, 加水适量 (浸透样品并高出样品 1~2~cm), 将挥发油提取器和冷凝管严密连接好, 自冷凝管上端加水使充满挥发油提取器的刻度部分。在电热套中微沸

10 h, 待提取器中的油量不再增加为止。冷却后, 开启提取器下端的活塞, 将水放至油层上端到达 刻度" 0 '线上面 $5 \, \text{mm}$ 为止。 放置 $1 \, \text{h}$, 再开启活 塞使油层下降至其上端恰与刻度 0 线齐平, 读得 挥发油量为 $0 \, 1 \, \text{mL}$ 。 最后放出挥发油并用无水 硫酸钠干燥, 待测。 根据计算挥发油含量约为w= $0 \, 02\%$ 。

13 实验条件

1 3 1 色谱条件 HP-5 色谱柱 $(30 \text{ m} \times 0.32 \text{ mm} \times 0.25 \mu\text{m})$; 氢焰离子化 (FD) 检测器。升温程序: 60 保持 2 min, 以 4 /min 升至 150 并恒温 2 min, 再以 4 /min 升至 250 ,恒温 10 min; 载气: 氦气: 汽化室温度 260 。

1 3 2 质谱条件 电子轰击(EI)离子源温度 200 ;接口温度 280 ;电子能量 70 eV;质量扫描范围m/z 30~ 450;进样量 0.2 μ L。

14 分析方法

用 HP-5 色谱柱对色谱分离条件进行优化,确定了最佳的分离条件,然后进行 GC M S 分析。利用该仪器所配的W iley 质谱库进行检索,再对所得的谱图进行人工核对和补充检索。然后用面积归一法测得各组分的百分含量。

1.5 成分分析

用气相色谱对罗布麻叶子中的挥发油化学成分进行分析。经气相色谱数据处理机用峰面积归一法测的各组分的百分含量,并用 GC /M S 联用仪获得挥发油的总离子流色谱图(T IC)。经计算机质谱数据库检索,共鉴定出 25 种组分,占总峰面积的 85. 38%,从而确定了罗布麻叶子中挥发油的基本化学成分。分析鉴定结果列于表 1。

表1 罗布麻叶挥发油化学成分的分析结果

Table 1 Analysis results of main components of volatile oil from Apocynum venetum L.

No	Compound	t _R ∕m in	Relative intensity/%	Sim iliarity/	No. Compound	t _R ∕m in	Relative intensity/%	Sim iliarity/%
1	1, 2-dioxo lane	11.73	1. 01	91	14 calarene	28.61	3 73	83
2	1 m ethyl-4- (1 m ethylethenyl) -cyclohexene	13.62	1. 19	79	15 orhum u lene	28. 10	0 67	93
3	3-penten-2-one	15.77	1. 84	81	16 β-b isabo lene	30.38	1. 54	80
4	nonanal	16.46	0 85	90	17 3-hexen-1-o lbenzo ate	30.79	6 45	90

续表

Nο	Compound	tr√m in	Relative intensity/%	Sim iliarity/	Relative No Compound nx/m in Sim iliarity/% intensity/%
5	5 m ethyl-2-(1 m ethylethyl) - cyclohexanol	17.50	2 09	96	18 hexadecane 34. 25 2 58 81
6	1-α-terp ineo l	20.87	10 38	78	19 caryophyllene oxide 38. 56 10. 57 76
7	1-carboxaldehyde-2, 6, 6- trin ethyl-1, 3-cycbhexadiene	24. 86	1. 46	92	20 2-dodencanone 39. 63 0 90 93
8	pulegone	25.88	4 24	90	21 tetradecanal 40.56 1.19 85
9	1-(2-furanyl)-2-ethanone	26. 18	1. 02	87	22 6, 10-dimethyl-2-undecanone 41.04 0 85 77
10	2m ethyl-5-(1m ethylethyl) phenol	26.38	4 77	86	23 (E, E)-farnesylacetone 41.81 1.68 88
11	β-dam a scenone	26.70	5. 85	87	24 3, 7, 11, 15-tetramethyl-2- 45. 44 5. 99 79 hexadecen-1-o1
12	tetradecane	27.07	2 53	75	25 dotriacontane 51. 77 1 28 92
13	trans-farne so 1	28. 07	5. 27	84	1-1 1116

2 结果与讨论

经分析,罗布麻挥发油主要成分为 1-α-萜品醇(10 38%)、长叶薄荷酮(4 25%)、2-甲基-5-异丙基苯酚(4 77%)、大马酮(5 85%)、反式-金合欢醇(5 27%)、氧化石竹烯(10 57%)、3,7,11,15-四甲基-2-十六碳烯-1-醇(5 99%)、苯甲酸-3-己烯酯(6 45%)等。占挥发油总量的 85 38%,其中主要以烯、酮、醇类化合物为主。经文献查证1-α-萜品醇有显著平喘功效,也可作为空气消毒剂。反式金合欢醇具有消炎健胃作用,民间用于治疗风湿扭伤等病。此外,它在日用香精中还起协调剂作用[^{9]}。氧化石竹烯具有平喘、抗肿瘤、抗菌和镇咳作用。本工作为以后罗布麻的深入研究和资源利用奠定了基础。

参考文献:

[1] 中国科学院植物志编委会 中国志(第 63 卷) [M] 北京: 北京科学出版社, 1977, 87.

- [2] 方学良 塔里木盆地大叶白麻土壤生长环境类型 [J] 植物生态学与地植物学学报,1986,10(1): 52~48
- [3] 张振杰 药用罗布麻(红麻)叶的化学成分研究[J] 中草药通讯, 1974, (1): 21~ 24
- [4] 邢声远 天然医疗保健纤维—罗布麻[J] 北京纺织, 2000, 22 (2): 15
- [5] 国家医药管理局中草药情报中心站 植物药有效成分手册[M] 北京:北京人民卫生出版社,1986.832~1032
- [6] 钱增年 大花罗布麻叶的药理研究[J] 中成药, 1990, 12(3): 98~ 99.
- [7] 秦 波,鲁润华,汪汉卿, 等 地涌金莲挥发油化学 成分的 GC·M·S 分析[J] 中兽医医药杂志,1996, 22(6): 3~ 7.
- [8] 何方奕, 洪晓明, 孙玉芳, 等 药用皖鄂鼠尾草精油 成分的初步分析[J] 北京大学学报(自版), 1997, 33(2): 142~ 146
- [9] 吴寿金, 赵 泰, 秦永琪 现代中草药成分化学 [M] 北京: 中国医药科技出版社, 2002. 674