第26卷第2期 2005年5月 质谱学报

Vol 26 No. 2 M ay 2005

Journal of Chinese M ass Spectrom etry Society

短杆单极质谱计性能研究

徐 波¹, 刘学博¹, 杨春信², 周抗寒¹, 黄 刚¹, 邓一兵¹

(1. 北京航天医学工程研究所,北京 100094; 2 北京航空航天大学,北京 100083)

摘要: 对单极质谱计易于实现高分辨率进行了分析, 研制了电极长度为 100 mm、质量分析器场半径 n=5 mm 的单极质谱计, 实测该仪器质量数范围M = 223, $E_N 2^+$ 峰 10% 峰高处分辨率R = 30, 实验证明该仪器可以用于残余气体分析领域。 关键词: 单极质谱计; 性能; 真空; 质量分析器

大雄呵: 単板原信川; 住能; 真空; 原重刀術器 中图分类号: O 657. 63 文献标识码: A 文章编号: 1004-2997(2005)02-101-04

Research on Performance of the Monopole Mass Spectrometer with Short Electrode

XU Bo¹, L U Xue-bo¹, YAN G Chun-xin², ZHOU Kang-han¹, HUAN G Gang¹, Deng Yi-bing (1. Institute of Beijing Space M edico-Engineering, Beijing 100094, China 2 Beijing University of A eronautics & A stronautics, Beijing 100083, China)

Abstract The performances of the monopole mass spectrometer were analyzed that it had high resolving power and focusing property. The monopole mass spectrometer whose electrode length was 100 mm and $r_0 = 5$ mm had been designed and manufactured. The resolving power and mass range of it had been measured. The researching results indicated: the mass range of the device was 223. The resolving power achieved 30 measured at 10% peak height of the N 2⁺. The device could be used in residual gas analysis

Key words: monopole mass spectrometer; performance; vacuum; analyzer

单极质谱计自 1963 年发明以来, 已经有 40 余年的历史, 其优点是结构简单, 又能很容易地 取得好的分辨率。在上世纪 70 年代对它的研究 达到了顶峰。但很快发现它存在两个缺点: 灵敏 度低, 且似乎不稳定; 峰形尖, 不易处理。因此, 对 它的研究日趋减少。但国际上部分机构对其研究 一直进行不懈的努力, 并取得了较大的进展。 1999 年俄罗斯 Ryazan State Radio Technical University 的 Ernst P. Sheretov 等^[1]对改进后 的单极质谱计的性能进行了测试,取得满意的试验结果。北京航天医学工程研究所自20世纪80年代对它进行比较深入的研究,并很快应用到呼吸气体成分测量领域,在此基础上研制出潜艇用质谱仪,用于潜艇大气成分的测量,目前致力于将单极质谱计应用到空间站和飞船等密闭环境 气体成分测量领域^[2-4]。

在相同射频频率和轴向能量的条件下,极杆 越短,单极质谱计的质量分辨率越差,但是究竟

收稿日期: 2004-04-30; 修回日期: 2004-09-06

作者简介: 徐 波(1972~), 男 (汉族), 吉林德惠人, 助理研究员, 从事气体成分测量技术研究。 E-mail: T suiboo@ sina com

短到什么程度,才不具备使用价值?在这方面并 没有定论。本工作拟介绍单极分析器场半径为5 mm、极杆长度为100mm的仪器所具备的分辨 率等性能的实验研究结果。

1 单极质谱计原理

单极质谱计原理示于图 1。取四极场的一个 象限,用一个V型直角电极接地来代替四极场 *x-y*平面对角线上的零电位面。在圆柱电极上施 加射频激励电压 92则沿轴向入射的不同质荷比 的带电粒子在场力的作用下被分离。

图 1 单极质谱计原理图 Fig 1 Schematic diagram of the monopole mass spectrometer

1.1 离子运动方程

一个质量为*m* 的单电荷离子以一定的初速 度沿 z 向进入单极场时,这个离子在电场内的运 动方程为:

$$\frac{d^2u}{d\xi^2} + (a_u - 2q_u \cos 2\xi) u = 0$$
(1)

式(1)中, ξ au、 qu 的定义参见相关文献[5,6]。

1.2 离子运动方程在单极场下的解

单极场中离子在 y 方向的运动是主要的, y 方向的运动方程为:

$$m \frac{d^2 y}{dt^2} = y \left(e/r_0^2 \right) \left(2U - 2V \cos \omega t \right)$$
(2)

经过变换,得:

102

$$\frac{d^2 y}{dt^2} = \frac{u^2}{4} (a - 2q\cos \omega t) y$$
(3)

求解得: $y = \overline{y} \left[1 + \frac{1}{2} q \cos \omega r \right]$ (4)

式(4)的物理意义为离子在 y 方向的运动轨迹,

即迭加在离开z轴的平均距离y上的小振荡。

1.3 单极质谱计易实现高分辨的分析

如果离子要经过 n 个射频周期通过长度为 l 的单极场,则离子在单极场中的渡越时间 t 为:

$$t = n/f$$

而 *t* 必须限制在 *y* 为正半长周期之内, 半个 长周期的时间值 *τ* 为:

$$\tau = \frac{\pi}{\beta \omega/2} = \frac{1}{\beta f}$$

$$= \frac{\pi}{\beta t}$$

$$n/f < \frac{1}{\beta f} \tag{7}$$

因此:

 $\beta n < 1$

(8)

要获得足够的分辨率,离子在单极场中应当 经历足够数目的射频周期的振荡,*n*的值通常在 12~20。这样,满足式(8)的 β 就很小了,通常 β <01。于是,单极场的稳定工作区就被压缩为0 < β <01,靠近稳定边界 β =0的一条窄带(图 2)^{15,7}。任取一根质量扫描线,不同质荷比*m*/*z* 的离子将按照它们不同的(*a*,*q*)值,沿该直线分 布。从图2可以看出,DE 段长度远小于 EF 段长 度,所以,任何可能斜率的质量扫描线,单极质谱 计均可获得高于四极质谱计的分辨率,而只有当 扫描线经过稳定三角形顶点 C 时,二者所获得 的分辨率才非常接近,所以,单极质谱计可以用 不严格的交直比U/V,获得高的分辨。

图 2 单极场稳定图(阴影窄带为其稳定工作区) Fig 2 Mathieu stability diagram for the monopole M S

单极质谱计的半高峰宽定义的分辨率可按 Zahn 在稳定区顶点附近绘出的关系估计如下:

离子平行于 z 轴进入 100 mm 短杆电极构 成的分析场中,根据能量守恒定律,有:

$$V_z = \sqrt{\frac{2eE_z}{m}} \tag{9}$$

离子在分析场中经历的射频周期数为:

$$n = \frac{l/v_z}{1/f} = lf \sqrt{\frac{m}{2eE_z}}$$
(10)

其中: n 为离子在分析场中经历的周期数; l 为分 析场长度, m; f 为射频频率, H z; m 为离子质量, kg; e 为离子所带电量, C (库仑); E_z 为离子对地

(5)

电压,V。

这里, $l = 0.1 \text{ m}; f = 2 \times 10^6 \text{ H}z; m = m_1 \cdot M$ = 1. 66×10⁻²⁷×28 kg= 4. 648×10⁻²⁶ kg(假设 N₂⁺ 穿越分析场); $e = 1.6 \times 10^{-19} \text{ c}; E_z = 100 \text{ V};$ 则得 n = 7.62

 $R = \frac{M}{\Delta M} = \frac{n^2}{2.25} = 26$

100 mm 短杆电极构成的单极质谱计, 其在 m/z = 28 处的计算分辨率为 26, 上述计算参数 值均为试验实际值, 其中 $E_z = 100~110$ V。

2 实验装置

构成单极质谱计的离子源 质量分析器和 离子检测器均置于圆筒状真空腔室内。装配完整 的单极质谱计示于图 3。

图 3 实验装置 Fig 3 Apparatus of experiment

质量分析器的设计采用了偏心型结构,分析 场支座内圆与外圆偏心 0 5 mm。这样,既保证 了入射的离子束离开直角电极顶点一定的距离, 又保证了入射的离子束与分析场的同轴度。此实 验装置采用的是法拉第简与电子倍增器复合型 检测器,真空环境由二级真空泵产生,用涡轮分 子泵作为前级泵粗抽真空至 0 1 Pa 以下,然后 启动溅射离子泵机组,用该泵作为主泵构成真空 系统,用质谱计测量该真空系统的残余气体成 分。其中,单极质量分析器为自行研制,离子检测 器为美国Detector Technology Inc 公司出品的 DeTech381型产品,涡轮分子泵为美国阿尔卡 特公司产品,溅射离子泵为上海真空泵厂L型 设备。

3 主要技术指标的定义与实验方法

3.1 质量范围

3 1 1 定义 质量范围表征质谱仪器所能够分 析的从最小到最大的质量数的区间(目前,国际 上通用的质量单位是以碳同位素¹²C的 1/12 作 为一个原子质量单位,符号为 u),即质量数*M*。

$$M = 28 + \frac{U_{\text{max}} - U_{28}}{(U_{28} - U_{18})/(28 - 18)}$$

$$\vec{\mathbf{x}}_{M} = 28 + \frac{d_{\text{max}} - d_{28}}{(U_{28} - 18)/(28 - 18)}$$
(11)

或 $M = 28 + \frac{(d_{28} - d_{18})}{(d_{28} - d_{18})}$ (11) 式(11)中,M 为质量范围,即质量数; U_{max} 为加到 圆柱电极上的最大直流电压, $V;U_{28},U_{18}$ 分别为 m = 28 u, m = 18 u 质量峰所对应的直流电压, $V;d_{max}$ 为 U_{max} 所对应的记录纸距离,mm; d_{28},d_{18} 分别为N₂⁺,m = 18 u 质量峰所对应的记录纸距离,mm;

3 1 2 实验方法 将真空系统压强抽至 1× 10⁻⁴ Pa 以下,确定N₂⁺峰与H₄O⁺峰所对应的电 极上的直流电压 U_{2%} U₁₈,同时记录记录纸上的 相应距离 d_{2%} d₁₈,测量 d_{2%} d₁₈,按照式(11)计算 出质量范围。

3.2 分辨率

3 2 1 定义 分辨率 *R* 表征质谱仪器鉴别质 量数差异的能力。系指在质量*M* 处,该质量数*M* 与峰宽 Δ*M* 之比。即:

$$R = \frac{M}{\Delta M_{(10\%)}} = M \cdot \frac{b}{a} \tag{12}$$

式(12)中: R 为分辨率; b 为质量间隔 1 u 的两质 量峰的中心距, mm; a 为N 2^+ 峰 10% 峰高处的宽 度, mm; ΔM 为N 2^+ 峰高在 10% 处的峰宽所相当 的质量间隔, u₀

3 2 2 实验方法 将系统压强抽至 1 × 10⁻⁴ Pa 以下,调节离子源参数,使分辨最佳,同时使峰高 不低于记录仪全程的 20%,连续三幅,取三幅中 最低值,按照式(12)计算分辨率。

3.3 真空系统测试

使用该设备对系统真空环境进行全质量数 扫描,定性分析系统内微量成分。

4 实验结果

质量范围和分辨率测试结果列于表 1。

第 26 卷

表1 质量范围和分辨率测试数据

Table 1 Data of mass range and resolution measured

No	(<i>dmax</i> - <i>d</i> 28) /mm	(<i>d</i> 28- <i>d</i> 18) /mm	М	<i>b/</i> mm	a/mm	Resolution
1	837. 0	37. 5	251	5. 3	5.0	30
2	574.5	29. 0	223	6 0	5.0	33
3	1 438 5	77. 5	227	5. 5	5. 0	31

图 4 为单极质谱计真空系统内残余气体质 谱图。该真空系统总压较长时间维持在 1 × 10⁻⁶ Pa 以下, 而m/z= 32 峰很小, 说明系统真空良 好, 没有泄漏; m/z= 18 谱峰较高, 说明系统水汽 过多, 阻碍系统真空度的提高。m/z= 27, m/z= 29 峰较高, 同时参考m/z= 31 峰, 表明系统内存 在乙醇蒸汽。m/z= 55, m/z= 56, m/z= 57 和 m/z= 39, m/z= 41 的谱峰可能是碳氢化合物, 初步认为是系统内的污染, 其来源可能是标识于 陶瓷零件上的残余墨水蒸汽, 该谱图说明了系统 为经过清洗而未被烘烤且清洗不净的状态, 其中 水蒸气, 烃类物质或碳氢化合物阻碍了系统真空 度的提高。

图 4 残余气体成分谱图 Fig 4 Spectrum of residuals

5 结 论

104

对单极质谱计易实现高分辨率进行了分析, 对 ro= 5 mm、长度为 100 mm 电极构成的单极 质谱计的分辨率和质量范围进行了测试,定性分 析了真空系统内残余气体成分。实验证明: (1) 质量数范围M = 223;

 (2) 在N²⁺ 峰 10% 峰高处取得 R = 30 的分 辨率;

(3) ro= 5 mm、长度为 100 mm 电极构成的单极质谱计可以用在残余气体分析领域。

参考文献:

- [1] Ernst P Sheretov, V ictor S Gurov, M ichael V Dubkov, et al A Monopole M ass Filter with a Hyperbolic V-shaped Electrode [J] Rapid Commun M ass Spectrom, 1999, 13: 1 699~ 1 702
- [2] 刘学博, 许胜国, 李绍才, 等 DZF 型单极质谱计 某些特点的实验观察[J] 中国质谱学杂志(《质谱 学报》), 1985, 6(3): 233
- [3] 刘学博,李谭秋,许胜国,等 质谱技术在潜艇大气 成份监测中的应用[J] 人- 机- 环境系统工程研 究进展, 1995.
- [4] Liu Xuebo, Huang Gang, Li Tanqiu, et al The A dvance of M onopole M ass Spectrom eter for A ccurate Q uantitative M easurem ents[R] 15th International M ass Spectrom etry Conference, Beijing, 2000
- [5] Daw son PH, Whetten NR. A dvances in Electronics and Electron Physics, M ass Spectroscopy using RF Quadrupole Fields [M] New York and London: A cadem ic Press, 1969, 27: 59~ 185.
- [6] Daw son PH, W hetten NR. The Monopole M ass Spectrometer [J] Rev Sci Instr, 1968, 39 (10): 1 417~ 1 422
- [7] Von Zahn U. Monopole Spectrometer, a New Electric Field Mass Spectrometer [J]. Rev Sci Instr, 1963, 34(1): 1~ 4