BI Ming, TIAN Zhi-xin. Research Progress in Structure-specific N-glycoproteomics[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5): 897-913. DOI: 10.7538/zpxb.2021.0122
Citation: BI Ming, TIAN Zhi-xin. Research Progress in Structure-specific N-glycoproteomics[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5): 897-913. DOI: 10.7538/zpxb.2021.0122

Research Progress in Structure-specific N-glycoproteomics

More Information
  • N-linked glycosylation, as one of the most common post-translation modification in proteins, is modified on asparagine residue among the N-X-T/S/C(X≠P) motif. N-glycans share a common core structure consisting of two N-acetylglusosamines and three mannoses, and which have three common types of high-mannose, hybrid and complex. N-glycosylation sites have both macro- and micro- heterogeneities and the function of each N-glycoylation is both site- and structure-specific. The precise site- and structure-specific identification and quantification of N-glycosylation is the main road of discovering disease diagnostic and prognostic biomarkers as well as drug targets. With the advancements in high-efficient enrichment materials, liquid chromatography separation technology, cascade mass spectrometry dissociation and detection technologies and bioinformatics database search methods, N-glycoproteomics enables high-throughput site- and structure-specific identification and quantification of N-glycosylation in complex systems. This paper mainly reviewed the basic procedures in the N-glycoproteomics pipeline including sample preparation, high-performance LC-MS/MS analysis and bioinformatics data processing as well as representative applications.
  • [1]
    BANKS D D. The effect of glycosylation on the folding kinetics of erythropoietin[J]. Journal of Molecular Biology, 2011, 412(3): 536-550.
    [2]
    BLOEM K, VUIST I M, van der PLAS A J, KNIPPELS L M J, GARSSEN J, GARCIAVALLEJO J J, van VLIET S J, van KOOYK Y. Ligand binding and signaling of dendritic cell immunoreceptor (DCIR) is modulated by the glycosylation of the carbohydrate recognition domain[J]. PLoS One, 2013, 8(6): 10.
    [3]
    WORMALD M R, SHARON N. Carbohydrates and glycoconjugateshot roles for glycosylation: signal transduction, control of cell development and differentiation, and innate immunityeditorial overview[J]. Current Opinion in Structural Biology, 2002, 12(5): 567-568.
    [4]
    APWEILER R, HERMJAKOB H, SHARON N. On the frequency of protein glycosylation, as deduced from analysis of the SWISSPROT database[J]. Biochim Biophys ActaGen Subj, 1999, 1 473(1): 4-8.
    [5]
    HARVEY D J. Negative ion mass spectrometry for the analysis of Nlinked glycans[J]. Mass Spectrom Rev, 2020, 39(5/6): 586-679.
    [6]
    FLORES A, MARRERO J A. Emerging trends in hepatocellular carcinoma: focus on diagnosis and therapeutics[J]. Clinical Medicine Insights Oncology, 2014, 8: 71-76.
    [7]
    BREBOROWICZ J, MACKIEWICZ A, BREBOROWICZ D. Microheterogeneity of alphafetoprotein in patient serum as demonstrated by lectin affinoelectrophoresis[J]. Scandinavian Journal of Immunology, 1981, 14(1): 15-20.
    [8]
    SATO Y, NAKATA K, KATO Y, SHIMA M, ISHII N, KOJI T, TAKETA K, ENDO Y, NAGATAKI S. Early recognition of hepatocellularcarcinoma based on altered profiles of alphafetoprotein[J]. New England Journal of Medicine, 1993, 328(25): 1802-1806.
    [9]
    LI D, MALLORY T, SATOMURA S. AFPL3: a new generation of tumor marker for hepatocellular carcinoma[J]. Clinica Chimica Acta, 2001, 313(1/2): 15-19.
    [10]
    KIM K H, LEE S Y, HWANG H, LEE J Y, JI E S, AN H J, KIM J Y, YOO J S. Direct monitoring of fucosylated glycopeptides of alphafetoprotein in human serum for early hepatocellular carcinoma by liquid chromatography-tandem mass spectrometry with immunoprecipitation[J]. Proteom Clin Appl, 2018, 12(6): 10.
    [11]
    WU M, LIU Z B, ZHANG A Y, LI N. Associated measurement of fucosylated levels of AFP, DCP, and GPC3 for early diagnosis in hepatocellular carcinoma[J]. Int J Biol Markers, 2019, 34(1): 20-26.
    [12]
    LI C W, LIM S O, CHUNG E M, KIM Y S, PARK A H, YAO J, CHA J H, XIA W Y, CHAN L C, KIM T, CHANG S S, LEE H H, CHOU C K, LIU Y L, YEH H C, PERILLO E P, DUNN A K, KUO C W, KHOO K H, HSU J L, WU Y, HSU J M, YAMAGUCHI H, HUANG T H, SAHIN A A, HORTOBAGYI G N, YOO S S, HUNG M C. Eradication of triplenegative breast cancer cells by targeting glycosylated PDL1[J]. Cancer Cell, 2018, 33(2): 187.
    [13]
    PAGAN J D, KITAOKA M, ANTHONY R M. Engineered sialylation of pathogenic antibodies in vivo attenuates autoimmune disease[J]. Cell, 2018, 172(3): 564.
    [14]
    SINGH A. Glycoproteomics[J]. Nature Methods, 2021, 18(1): 28.
    [15]
    JENSEN P H, MYSLING S, HOJRUP P, JENSEN O N. Glycopeptide enrichment for MALDITOF mass spectrometry analysis by hydrophilic interaction liquid chromatography solid phase extraction(HILIC SPE)[J]. Methods in Molecular Biology, 2013, 951: 131-144.
    [16]
    ALAGESAN K, KHILJI S K, KOLARICH D. It is all about the solvent: on the importance of the mobile phase for ZICHILIC glycopeptide enrichment[J]. Analytical and Bioanalytical Chemistry, 2017, 409(2): 529-538.
    [17]
    ZHANG C Q, YE Z L, XUE P, SHU Q B, ZHOU Y, JI Y L, FU Y, WANG J F, YANG F Q. Evaluation of different nglycopeptide enrichment methods for nglycosylation sites mapping in mouse brain[J]. Journal of Proteome Research, 2016, 15(9): 2960-2968.
    [18]
    MADERA M, MANN B, MECHREF Y, NOVOTNY M V. Efficacy of glycoprotein enrichment by microscale lectin affinity chromatography[J]. Journal of Separation Science, 2008, 31(14): 2 7222 732.
    [19]
    XUE P, ZHOU Y, DING X, WANG J, XIE Z S, YANG F Q. Comparison of hydrazide chemistry and lectin affinity based enrichment methods for Nglycoproteomics[J]. Progress in Biochemistry and Biophysics, 2015, 42(4): 356-364.
    [20]
    ZHANG H, LI X J, MARTIN D B, AEBERSOLD R. Identification and quantification of Nlinked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry[J]. Nat Biotechnol, 2003, 21(6): 660-666.
    [21]
    SHENG Q Y, LI X L, YIN W, YU L, KE Y X, LIANG X M. Retention mechanism and enrichment of glycopeptides on titanium dioxide[J]. Analytical Methods, 2013, 5(24): 7072-7080.
    [22]
    PALMISANO G, LENDAL S E, ENGHOLMKELLER K, LETHLARSEN R, PARKER B L, LARSEN M R. Selective enrichment of sialic acidcontaining glycopeptides using titanium dioxide chromatography with analysis by HILIC and mass spectrometry[J]. Nature Protocols, 2010, 5(12): 1974-1982.
    [23]
    CHO K C, CHEN L J, HU Y W, SCHNAUBELT M, ZHANG H. Developing workflow for simultaneous analyses of phosphopeptides and glycopeptides[J]. ACS Chem Biol, 2019, 14(1): 58-66.
    [24]
    WANG Y, XIAO K, TIAN Z. Quantitative Nglycoproteomics using stable isotopic diethyl labeling[J]. Talanta, 2020: 219.
    [25]
    ZHU G J, SUN L L, YAN X J, DOVICHI N J. Singleshot proteomics using capillary zone electrophoresiselectrospray ionization-tandem mass spectrometry with production of more than 1 250 escherichia coli peptide identifications in a 50 min separation[J]. Analytical Chemistry, 2013, 85(5): 2569-2573.
    [26]
    KOZLIK P, SANDA M, GOLDMAN R. Nano reversed phase versus nano hydrophilic interaction liquid chromatography on a chip in the analysis of hemopexin glycopeptides[J]. Journal of Chromatography A, 2017, 1 519: 152-155.
    [27]
    DONG Q, YAN X J, LIANG Y X, STEIN S E. Indepth characterization and spectral library building of glycopeptides in the tryptic digest of a monoclonal antibody using 1D and 2D LC-MS/MS[J]. Journal of Proteome Research, 2016, 15(5): 1472-1486.
    [28]
    CAO L, TOLIC N, QU Y, MENG D, ZHAO R, ZHANG Q B, MOORE R J, ZINK E M, LIPTON M S, PAGATOLIC L, WU S. Characterization of intact N and Olinked glycopeptides using higher energy collisional dissociation[J]. Analytical Biochemistry, 2014, 452: 96-102.
    [29]
    RILEY N M, MALAKER S A, DRIESSEN M D, BERTOZZI C R. Optimal dissociation methods differ for N and OGlycopeptides[J]. Journal of Proteome Research, 2020, 19(8): 3286-3301.
    [30]
    BERN M, KIL Y J, BECKER C. Byonic: advanced peptide and protein identification software[J]. Current Protocols in Bioinformatics, 2012, 13: 20.
    [31]
    WANG Y, TIAN Z. New energy setup strategy for intact nglycopeptides characterization using higherenergy collisional dissociation[J]. Journal of the American Society for Mass Spectrometry, 2020, 31(3): 651-657.
    [32]
    XIAO K, TIAN Z. Site and structurespecific quantitative NGlycoproteomics using RPLCpentaHILIC separation and the intact NGlycopeptide search engine GPSeeker[J]. Current Protocols in Protein Science, 2019, 97(1): e94.
    [33]
    TROMBETTA E S. The contribution of Nglycans and their processing in the endoplasmic reticulum to glycoprotein biosynthesis[J]. Glycobiology, 2003, 13(9): 77R-91R.
    [34]
    BREITLING J, AEBI M. Nlinked protein glycosylation in the endoplasmic reticulum[J]. Cold Spring Harbor Perspect Biol, 2013, 5(8): 15.
    [35]
    ABRAHAMS J L, CAMPBELL M P, PACKER N H. Building a PGCLCMS Nglycan retention library and elution mapping resource[J]. Glycoconjugate Journal, 2018, 35(1): 15-29.
    [36]
    REN J M, REJTAR T, LI L, KARGER B L. Nglycan structure annotation of glycopeptides using a linearized glycan structure database (GlyDB)[J]. Journal of Proteome Research, 2007, 6(8): 3162-3173.
    [37]
    GAO H Y. Generation of asparaginelinked glycan structure databases and their use[J]. Journal of the American Society for Mass Spectrometry, 2009, 20(9): 1739-1742.
    [38]
    KRONEWITTER S R, AN H J, de LEOZ M L, LEBRILLA C B, MIYAMOTO S, LEISEROWITZ G S. The development of retrosynthetic glycan libraries to profile and classify the human serum Nlinked glycome[J]. Proteomics, 2009, 9(11): 2986-2994.
    [39]
    XIAO K, WANG Y, SHEN Y, HAN Y, TIAN Z. Largescale identification and visualization of Nglycans with primary structures using GlySeeker[J]. Rapid Commun Mass Spectrom, 2018, 32(2): 142-148.
    [40]
    LESLOUS M, TONG V V T, LALANDE J F, GENET T. Ieee, GPFinder: tracking the invisible in android malware[J]. Ieee: New York, 2017: 3946.
    [41]
    STADLMANN J, HOI D M, TAUBENSCHMID J, MECHTLER K, PENNINGER J M. Analysis of PNGase FResistant NGlycopeptides using SugarQb for proteome discoverer 2.1 reveals cryptic substrate specificities[J]. Proteomics, 2018, 18(13): 5.
    [42]
    ESHGHI S T, SHAH P, YANG W M, LI X D, ZHANG H. GPQuest: a spectral library matching algorithm for sitespecific assignment of tandem mass spectra to intact Nglycopeptides[J]. Analytical Chemistry, 2015, 87(10): 5181-5188.
    [43]
    LIU M Q, ZENG W F, FANG P, CAO W Q, LIU C, YAN G Q, ZHANG Y, PENG C, WU J Q, ZHANG X J, TU H J, CHI H, SUN R X, CAO Y, DONG M Q, JIANG B Y, HUANG J M, SHEN H L, WONG C C L, HE S M, YANG P Y. pGlyco 2.0 enables precision N-glycoproteomics with comprehensive quality control and onestep mass spectrometry for intact glycopeptide identification[J]. Nat Commun, 2017, 8: 14.
    [44]
    XIAO K, TIAN Z. GPSeeker enables quantitative structural NGlycoproteomics for site and structurespecific characterization of differentially expressed NGlycosylation in hepatocellular Carcinoma[J]. Journal of Proteome Research, 2019, 18(7): 2885-2895.
    [45]
    YANG G L, HU Y W, SUN S S, OUYANG C Z, YANG W M, WANG Q. BETENBAUGH M, ZHANG H. Comprehensive glycoproteomic analysis of Chinese hamster ovary cells[J]. Analytical Chemistry, 2018, 90(24): 14 29414 302.
    [46]
    SUN S S, HU Y W, JIA L, ESHGHI S T, LIU Y, SHAH P, ZHANG H. Sitespecific profiling of serum glycoproteins using NLinked glycan and glycosite analysis revealing atypical NGlycosylation sites on Albumin and alpha1BGlycoprotein[J]. Analytical Chemistry, 2018, 90(10): 6292-6299.
    [47]
    ZHANG Y, LIN T H, ZHAO Y, MAO Y H, TAO Y R, HUANG Y, WANG S S, HU L Q, CHENG J Q, YANG H. Characterization of Nlinked intact glycopeptide signatures of plasma IgGs from patients with prostate carcinoma and benign prostatic hyperplasia for diagnosis prestratification[J]. Analyst, 2020, 145(15): 5353-5362.
    [48]
    ZHANG S, CAO X Y, LIU C, LI W, ZENG W F, LI B W, CHI H, LIU M Q, QIN X, TANG L Y, YAN G Q, GE Z F, LIU Y K, GAO Q, LU H J. Nglycopeptide signatures of IgA(2) in serum from patients with hepatitis B virusrelated liver diseases[J]. Mol Cell Proteomics, 2019, 18(11): 2262-2272.
    [49]
    XIAO K, TIAN Z. Topdown characterization of histone H4 proteoforms with ProteinGoggle 2.0[J]. Chinese Journal of Chromatography, 2016, 34(12): 1255-1263.
    [50]
    SHEN Y, XIAO K, TIAN Z. Site and structurespecific characterization of the human urinary Nglycoproteome with sitedetermining and structurediagnostic product ions[J]. Rapid Commun Mass Spectrom, 2021, 35(1): e8952.
    [51]
    YANG J, WANG W, CHEN Z. A vaccine targeting the RBD of the S protein of SARSCoV2 induces protective immunity[J]. Nature, 2020, 586(7 830): 572.
    [52]
    XUE B, XIAO K, WANG Y, TIAN Z. Site and structurespecific quantitative Nglycoproteomics study of differential Nglycosylation in MCF7 cancer cells[J]. Journal of Proteomics, 2020: 212.
    [53]
    LU H, XIAO K, TIAN Z. Benchmark of site and structurespecific quantitative tissue Nglycoproteomics for discovery of potential Nglycoprotein markers: a case study of pancreatic cancer[J]. Glycoconjugate Journal, 2021, 38(2): 213-231.
    [54]
    WANG Y, XU F, CHEN Y, TIAN Z. A quantitative Nglycoproteomics study of cellsurface Nglycoprotein markers of MCF7/ADR cancer stem cells[J]. Analytical and Bioanalytical Chemistry, 2020, 412(11): 2423-2432.
    [55]
    XU F, WANG Y, XIAO K, HU Y, TIAN Z, CHEN Y. Quantitative site and structurespecific Nglycoproteomics characterization of differential Nglycosylation in MCF-7/ADR cancer stem cells[J]. Clinical Proteomics, 2020, 17(1): 3.
    [56]
    YANG H, XU F, CHEN Y, TIAN Z. Putative Nglycoprotein markers of MCF7/ADR cancer stem cells from Nglycoproteomics characterization of the whole cell lysate[J]. Talanta, 2021, 232: 122 437.
    [57]
    WANG Y, XU F, XIAO K, CHEN Y, TIAN Z. Site and structurespecific characterization of Nglycoprotein markers of MCF7 cancer stem cells using isotopiclabelling quantitative Nglycoproteomics[J]. Chemical Communications, 2019, 55(55): 7934-7937.
  • Cited by

    Periodical cited type(4)

    1. 吴红洋. 气相色谱-质谱法测定药用复合膜中16种光引发剂的残留量. 药物分析杂志. 2024(05): 851-858 .
    2. 黎才婷,雷紫依,丁胜华,蒋立文,刘霞,李跑. 基于色谱-质谱联用技术的食品中农药残留高通量非靶向检测技术研究进展. 食品科学. 2023(05): 231-240 .
    3. 刘钰成 ,黄宗雄 . 纺织品中致癌染料检测方法研究进展. 中国纤检. 2022(03): 57-61 .
    4. 郭艳国,刘振江,潘兴鲁,董丰收,郑永权. 我国农药残留快速检测技术研究进展及其发展趋势. 现代农药. 2022(06): 1-5+18 .

    Other cited types(3)

Catalog

    Article views (487) PDF downloads (291) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return