Citation: | XIANG Yu, JIANG Ting, XU Wei. Review of Ion Collision Cross Section Measurement Methods Based on Ion Trap Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2022, 43(5): 611-622. DOI: 10.7538/zpxb.2022.0038 |
[1] |
NICHOLLS A, SHARP K A, HONIG B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons[J]. Proteins: Structure, Function, and Bioinformatics, 1991, 11(4): 281-296.
|
[2] |
PERUTZ M F. Structural revolution[J]. Nature, 1991, 353(6 342): 311.
|
[3] |
MAY J C, MORRIS C B, MCLEAN J A. Ion mobility collision cross section compendium[J]. Analytical Chemistry, 2017, 89(2): 1032-1044.
|
[4] |
HARRIS G A, GRAF S, KNOCHENMUSS R, FERNNDEZ F M. Coupling laser ablation/desorption electrospray ionization to atmospheric pressure drift tube ion mobility spectrometry for the screening of antimalarial drug quality[J]. Analyst, 2012, 137(13): 3039-3044.
|
[5] |
GILES K, PRINGLE S D, WORTHINGTON K R, LITTLE D, WILDGOOSE J L, BATEMAN R H. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide[J]. Rapid Communications in Mass Spectrometry, 2004, 18(20): 2401-2414.
|
[6] |
SHVARTSBURG A A, SMITH R D. Optimum waveforms for differential ion mobility spectrometry (FAIMS)[J]. Journal of the American Society for Mass Spectrometry, 2008, 19(9): 1286-1295.
|
[7] |
RIDGEWAY M E, LUBECK M, JORDENS J, MANN M, PARK M A. Trapped ion mobility spectrometry: a short review[J]. International Journal of Mass Spectrometry, 2018, 425: 22-35.
|
[8] |
RSNEN R M, HKANSSON M, VILJANEN M. Differentiation of air samples with and without microbial volatile organic compounds by aspiration ion mobility spectrometry and semiconductor sensors[J]. Building and Environment, 2010, 45(10): 2184-2191.
|
[9] |
SACRISTAN E, SOLIS A A. A sweptfield aspiration condenser as an ionmobility spectrometer[J]. IEEE Transactions on Instrumentation and Measurement, 1998, 47(3): 769-775.
|
[10] |
VIDALDEMIGUEL G, MACA M, CUEVAS J. Transversal modulation ion mobility spectrometry (TMIMS), a new mobility filter overcoming turbulence related limitations[J]. Analytical Chemistry, 2012, 84(18): 7831-7837.
|
[11] |
KURULUGAMA R T, NACHTIGALL F M, LEE S, VALENTINE S J, CLEMMER D E. Overtone mobility spectrometry: Part 1. experimental observations[J]. Journal of the American Society for Mass Spectrometry, 2009, 20(5): 729-737.
|
[12] |
MKINEN M, NOUSIAINEN M, SILLANP M. Ion spectrometric detection technologies for ultratraces of explosives: a review[J]. Mass Spectrometry Reviews, 2011, 30(5): 940-973.
|
[13] |
MRQUEZSILLERO I, AGUILERAHERRADOR E, CRDENAS S, VALCRCEL M. Ionmobility spectrometry for environmental analysis[J]. TrAC Trends in Analytical Chemistry, 2011, 30(5): 677-690.
|
[14] |
PERL T, CARSTENS E, HIRN A, QUINTEL M, VAUTZ W, NOLTE J, JNGER M. Determination of serum propofol concentrations by breath analysis using ion mobility spectrometry[J]. British Journal of Anaesthesia, 2009(6): 822-827.
|
[15] |
CLEMMER D E, JARROLD M F. Ion mobility measurements and their applications to clusters and biomolecules[J]. Journal of Mass Spectrometry, 1997, 32(6): 577-592.
|
[16] |
SORRIBESSORIANO A, de LA GUARDIA M, ESTEVETURRILLAS F A, ARMENTA S. Trace analysis by ion mobility spectrometry: from conventional to smart sample preconcentration methods. A review[J]. Analytica Chimica Acta, 2018, 1 026: 37-50.
|
[17] |
KANU A B, DWIVEDI P, TAM M, MATZ L, HILL H H. Ion mobilitymass spectrometry[J]. Journal of Mass Spectrometry, 2008, 43(1): 1-22.
|
[18] |
MAY J C, MCLEAN J A. Ion mobilitymass spectrometry: timedispersive instrumentation[J]. Analytical Chemistry, 2015, 87(3): 1422-1436.
|
[19] |
ERLER A, RIEBE D, BEITZ T, LHMANNSRBEN H G, GROTHUSHEITKAMP D, KUNZ T, METHNER F J. Characterization of volatile metabolites formed by molds on barley by mass and ion mobility spectrometry[J]. Journal of Mass Spectrometry, 2020, 55(5): e4501.
|
[20] |
JIN L, BARRAN P E, DEAKIN J A, LYON M, UHRN D. Conformation of glycosaminoglycans by ion mobility mass spectrometry and molecular modelling[J]. Physical Chemistry Chemical Physics, 2005, 7(19): 3 4643 471.
|
[21] |
SCARFF C A, PATEL V J, THALASSINOS K, SCRIVENS J H. Probing hemoglobin structure by means of travelingwave ion mobility mass spectrometry[J]. Journal of the American Society for Mass Spectrometry, 2009, 20(4): 625-631.
|
[22] |
BORNSCHEIN R E, HYUNG S J, RUOTOLO B T. Ion mobilitymass spectrometry reveals conformational changes in charge reduced multiprotein complexes[J]. Journal of the American Society for Mass Spectrometry, 2011, 22(10): 1 690.
|
[23] |
FASCIOTTI M, SOUZA G H M F, ASTARITA G, COSTA I C R, MONTEIRO T V C, TEIXEIRA C M L L, EBERLIN M N, SARPAL A S. Investigating the potential of ion mobility-mass spectrometry for microalgae biomass characterization[J]. Analytical Chemistry, 2019, 91(14): 9266-9276.
|
[24] |
WOBSCHALL D, GRAHAM J R, MALONE D P. Ion cyclotron resonance and the determination of collision cross sections[J]. Physical Review, 1963, 131(4): 1565-1571.
|
[25] |
LANGEVIN P. A fundamental formula of kinetic theory[J]. Annales De Chimie Et De Physique, 1905, 5: 245-288.
|
[26] |
GUAN S, LI G Z, MARSHALL A G. Effect of ionneutral collision mechanism on the trappedion equation of motion: a new mass spectral line shape for high-mass trapped ions[J]. International Journal of Mass Spectrometry and Ion Processes, 1997(167/168): 185-193.
|
[27] |
JIAO C Q, RANATUNGA D R A, VAUGHN W E, FREISER B S. A pulsedleak valve for use with ion trapping mass spectrometers[J]. Journal of the American Society for Mass Spectrometry, 1996, 7(1): 118-122.
|
[28] |
GUO D, XIN Y, LI D, XU W. Collision cross section measurements for biomolecules within a highresolution FT-ICR cell: theory[J]. Physical Chemistry Chemical Physics, 2015, 17(14): 9060-9067.
|
[29] |
FORNELLI L, DURBIN K R, FELLERS R T, EARLY B P, KELLEHER N L. Advancing topdown analysis of the human proteome using a benchtop quadrupole-orbitrap mass spectrometer[J]. Journal of Proteome Research, 2017, 16(2): 609-618.
|
[30] |
YANG F, JONES C A, DEARDEN D V. Effects of kinetic energy and collision gas on measurement of cross sections by Fourier transform ion cyclotron resonance mass spectrometry[J]. International Journal of Mass Spectrometry, 2015, 378: 143-150.
|
[31] |
GUO D, WANG Y, XIONG X, ZHANG H, ZHANG X, YUAN T, FANG X, XU W. Space charge induced nonlinear effects in quadrupole ion traps[J]. Journal of the American Society for Mass Spectrometry, 2014, 25(3): 498-508.
|
[32] |
WOBSCHALL D, FLUEGGE R A, GRAHAM J R. Collision cross sections of hydrogen and other ions as determined by ion cyclotron resonance[J]. The Journal of Chemical Physics, 1967, 47(10): 4091-4094.
|
[33] |
MARSHALL A G, COMISAROW M B, PARISOD G. Relaxation and spectral line shape in Fourier transform ion resonance spectroscopy[J]. The Journal of Chemical Physics, 1979, 71(11): 4434-4444.
|
[34] |
YANG F, VOELKEL J E, DEARDEN D V. Collision cross sectional areas from analysis of fourier transform ion cyclotron resonance line width: a new method for characterizing molecular structure[J]. Analytical Chemistry, 2012, 84(11): 4851-4857.
|
[35] |
ANUPRIYA, JONES C A, DEARDEN D V. Collision cross sections for 20 protonated amino acids: Fourier transform ion cyclotron resonance and ion mobility results[J]. Journal of the American Society for Mass Spectrometry, 2016, 27(8): 1366-1375.
|
[36] |
POPE B L, JOAQUIN D, HICKEY J T, MISMASH N, HERAVI T, SHRESTHA J, ARSLANIAN A J, ANUPRIYA, MORTENSEN D N, DEARDEN D V. Multi-CRAFTI: relative collision cross sections from Fourier transform ion cyclotron resonancemass spectrometric line width measurements[J]. Journal of the American Society for Mass Spectrometry, 2022, 33(1): 131-140.
|
[37] |
JIANG T, CHEN Y, MAO L, MARSHALL A G, XU W. Extracting biomolecule collision cross sections from the highresolution FT-ICR mass spectral linewidths[J]. Physical Chemistry Chemical Physics, 2016, 18(2): 713-717.
|
[38] |
TANG Y, LI D, CAO D, XU W. Extracting biomolecule collision cross sections from FTICR mass spectral line shape[J]. Talanta, 2019, 205: 120 093.
|
[39] |
MAO L, CHEN Y, XIN Y, CHEN Y, ZHENG L, KAISER N K, MARSHALL A G, XU W. Collision cross section measurements for biomolecules within a high-resolution Fourier transform ion cyclotron resonance cell[J]. Analytical Chemistry, 2015, 87(8): 4072-4075.
|
[40] |
COMISAROW M B, MELKA J D. Error estimates for finite zerofilling in Fourier transform spectrometry[J]. Analytical Chemistry, 1979, 51(13): 2198-2203.
|
[41] |
LI D, TANG Y, FEI W, JIANG T, XU W. Timefrequency analysis of Fourier transform mass spectrometry data by the hilbert transformbased time-domain method[J]. International Journal of Mass Spectrometry, 2020, 457: 116 432.
|
[42] |
HU M, ZHANG L, HE S, XU C, SHI Q. Collision cross section (CCS) measurement by ion cyclotron resonance mass spectrometry with short-time Fourier transform[J]. Rapid Communications in Mass Spectrometry, 2018, 32(9): 751-761.
|
[43] |
SCIGELOVA M, MAKAROV A. Orbitrap mass analyzeroverview and applications in proteomics[J]. Proteomics, 2006, 6(S2): 16-21.
|
[44] |
BAIDOO E E K, TEIXEIRA B V. Mass spectrometrybased microbial metabolomics: techniques, analysis, and applications[J]. Microbial Metabolomics, 2019, 1 859: 11-69.
|
[45] |
MAKAROV A, DENISOV E. Dynamics of ions of intact proteins in the Orbitrap mass analyzer[J]. Journal of the American Society for Mass Spectrometry, 2009, 20(8): 1486-1495.
|
[46] |
AIZIKOV K, GRINFELD D, DAMOC E, MAKAROV A. Putting scattering to the right usediscrimination of ionic species of different sizes by the decay rate in FTM acknowledgements[C]. Proceedings of the 62nd ASMS Conference on Mass Spectrometry and Allied Topics, Baltimore, United States, 2014.
|
[47] |
SANDERS J D, GRINFELD D, AIZIKOV K, MAKAROV A, HOLDEN D D, BRODBELT J S. Determination of collision crosssections of protein ions in an Orbitrap mass analyzer[J]. Analytical Chemistry, 2018, 90(9): 5896-5902.
|
[48] |
HE M, GUO D, FENG Y, XIONG X, ZHANG H, FANG X, XU W. Realistic modeling of ionneutral collisions in quadrupole ion traps[J]. Journal of Mass Spectrometry, 2015, 50(1): 95-102.
|
[49] |
HE M, GUO D, CHEN Y, XIONG X, FANG X, XU W. Ion collision crosssection measurements in quadrupole ion traps using a timefrequency analysis method[J]. Analyst, 2014, 139(23): 6144-6153.
|
[50] |
JIANG T, HE M, GUO D, ZHAI Y, XU W. Ion collision cross section analyses in quadrupole ion traps using the filter diagonalization method: a theoretical study[J]. Physical Chemistry Chemical Physics, 2016, 18(17): 12058-12064.
|
[51] |
XIONG C, LIU H, LIU C, XUE J, ZHAN L, NIE Z. Mass, size, and density measurements of microparticles in a quadrupole ion trap[J]. Analytical Chemistry, 2019, 91(21): 13508-13513.
|
[52] |
FAN J, LIAN P, LI M, LIU X, ZHOU X, OUYANG Z. Ion mobility separation using a DualLIT miniature mass spectrometer[J]. Analytical Chemistry, 2020, 92(3): 2573-2579.
|
[53] |
DZIEKONSKI E T, JOHNSON J T, LEE K W, MCLUCKEY S A. Determination of collision cross sections using a Fourier transform electrostatic linear ion trap mass spectrometer[J]. Journal of the American Society for Mass Spectrometry, 2018, 29(2): 242-250.
|
[54] |
ELLIOTT A G, HARPER C C, LIN H W, SUSA A C, XIA Z, WILLIAMS E R. Simultaneous measurements of mass and collisional cross-section of single ions with charge detection mass spectrometry[J]. Analytical Chemistry, 2017, 89(14): 7701-7708.
|
[55] |
RICHARDSON K, LANGRIDGE D, DIXIT S M, RUOTOLO B T. An improved calibration approach for traveling wave ion mobility spectrometry: robust, highprecision collision cross sections[J]. Analytical Chemistry, 2021, 93(7): 3542-3550.
|