XIANG Yu, JIANG Ting, XU Wei. Review of Ion Collision Cross Section Measurement Methods Based on Ion Trap Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2022, 43(5): 611-622. DOI: 10.7538/zpxb.2022.0038
Citation: XIANG Yu, JIANG Ting, XU Wei. Review of Ion Collision Cross Section Measurement Methods Based on Ion Trap Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2022, 43(5): 611-622. DOI: 10.7538/zpxb.2022.0038

Review of Ion Collision Cross Section Measurement Methods Based on Ion Trap Mass Spectrometry

More Information
  • In recent years, with the increasing demand for molecular structure analysis, the development of method for measuring ion collision cross sections (CCS) in a single ion trap mass analyzer has become a research hot topic. Measuring ion CCS in ion trap mass spectrometry does not require additional instrument modifications and experimental conditions, it is possible to measure ion CCS while obtaining a high-resolution mass spectrum. Reducing instrument complexity and obtaining molecular structure information when measuring highresolution mass, the method has gradually become an effective mean of measuring CCS. So far, Measuring ion CCS has been succeed in Fourier transform ion cyclotron resonance (FT-ICR) trap, Orbitrap, quadrupole ion trap (QIT), electrostatic linear ion trap (ELIT). Accurate measurement of ion motion decay in ion traps is the primary prerequisite for measuring ion CCS with ion trap mass spectrometers. The collision between ions and buffer gas is the main reason for ion motion decay. In particular, on the basis of the original ion collision models including the Langevin collision model, the hardsphere collision model, the mixed collision model, the energetic hardsphere collision model was developed. Ion motion under different experimental conditions is suitable for different collision models. Based on this, a lot of methods were developed to calculate ion motion decay curves including frequency domain, time domain and time-frequency analysis methods, thus enhancing accuracy and resolution of ion CCS measurement. However, there are still many challenges. Ion CCS measurement in ion trap mass spectrometry depends on true pressure in ion trap, however true pressure in ion trap can′t be measured precisely. Also, the ion CCS of the isomers can′t be measured separately in ion trap mass spectrometry yet. Therefore, the useful method to realize the CCS measurement of isomers urgently needs to be developed, and improving the resolution of CCS measurement in ion trap mass spectrometry will also be an important thing. Specially, the lower the pressure, the greater the ion kinetic energy, then the resolution of ion CCS measurement is better. The methods to get higher sensitivity detection electronics and lower pressure remain to be developed. Here, the theory of collision between ions and buffer gas molecules was expounded, then different methods for measuring ion CCS in ion trap mass spectrometry, and the advantages and disadvantages of the measurement methods were reviewed, the future research direction was prospected at last.
  • [1]
    NICHOLLS A, SHARP K A, HONIG B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons[J]. Proteins: Structure, Function, and Bioinformatics, 1991, 11(4): 281-296.
    [2]
    PERUTZ M F. Structural revolution[J]. Nature, 1991, 353(6 342): 311.
    [3]
    MAY J C, MORRIS C B, MCLEAN J A. Ion mobility collision cross section compendium[J]. Analytical Chemistry, 2017, 89(2): 1032-1044.
    [4]
    HARRIS G A, GRAF S, KNOCHENMUSS R, FERNNDEZ F M. Coupling laser ablation/desorption electrospray ionization to atmospheric pressure drift tube ion mobility spectrometry for the screening of antimalarial drug quality[J]. Analyst, 2012, 137(13): 3039-3044.
    [5]
    GILES K, PRINGLE S D, WORTHINGTON K R, LITTLE D, WILDGOOSE J L, BATEMAN R H. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide[J]. Rapid Communications in Mass Spectrometry, 2004, 18(20): 2401-2414.
    [6]
    SHVARTSBURG A A, SMITH R D. Optimum waveforms for differential ion mobility spectrometry (FAIMS)[J]. Journal of the American Society for Mass Spectrometry, 2008, 19(9): 1286-1295.
    [7]
    RIDGEWAY M E, LUBECK M, JORDENS J, MANN M, PARK M A. Trapped ion mobility spectrometry: a short review[J]. International Journal of Mass Spectrometry, 2018, 425: 22-35.
    [8]
    RSNEN R M, HKANSSON M, VILJANEN M. Differentiation of air samples with and without microbial volatile organic compounds by aspiration ion mobility spectrometry and semiconductor sensors[J]. Building and Environment, 2010, 45(10): 2184-2191.
    [9]
    SACRISTAN E, SOLIS A A. A sweptfield aspiration condenser as an ionmobility spectrometer[J]. IEEE Transactions on Instrumentation and Measurement, 1998, 47(3): 769-775.
    [10]
    VIDALDEMIGUEL G, MACA M, CUEVAS J. Transversal modulation ion mobility spectrometry (TMIMS), a new mobility filter overcoming turbulence related limitations[J]. Analytical Chemistry, 2012, 84(18): 7831-7837.
    [11]
    KURULUGAMA R T, NACHTIGALL F M, LEE S, VALENTINE S J, CLEMMER D E. Overtone mobility spectrometry: Part 1. experimental observations[J]. Journal of the American Society for Mass Spectrometry, 2009, 20(5): 729-737.
    [12]
    MKINEN M, NOUSIAINEN M, SILLANP M. Ion spectrometric detection technologies for ultratraces of explosives: a review[J]. Mass Spectrometry Reviews, 2011, 30(5): 940-973.
    [13]
    MRQUEZSILLERO I, AGUILERAHERRADOR E, CRDENAS S, VALCRCEL M. Ionmobility spectrometry for environmental analysis[J]. TrAC Trends in Analytical Chemistry, 2011, 30(5): 677-690.
    [14]
    PERL T, CARSTENS E, HIRN A, QUINTEL M, VAUTZ W, NOLTE J, JNGER M. Determination of serum propofol concentrations by breath analysis using ion mobility spectrometry[J]. British Journal of Anaesthesia, 2009(6): 822-827.
    [15]
    CLEMMER D E, JARROLD M F. Ion mobility measurements and their applications to clusters and biomolecules[J]. Journal of Mass Spectrometry, 1997, 32(6): 577-592.
    [16]
    SORRIBESSORIANO A, de LA GUARDIA M, ESTEVETURRILLAS F A, ARMENTA S. Trace analysis by ion mobility spectrometry: from conventional to smart sample preconcentration methods. A review[J]. Analytica Chimica Acta, 2018, 1 026: 37-50.
    [17]
    KANU A B, DWIVEDI P, TAM M, MATZ L, HILL H H. Ion mobilitymass spectrometry[J]. Journal of Mass Spectrometry, 2008, 43(1): 1-22.
    [18]
    MAY J C, MCLEAN J A. Ion mobilitymass spectrometry: timedispersive instrumentation[J]. Analytical Chemistry, 2015, 87(3): 1422-1436.
    [19]
    ERLER A, RIEBE D, BEITZ T, LHMANNSRBEN H G, GROTHUSHEITKAMP D, KUNZ T, METHNER F J. Characterization of volatile metabolites formed by molds on barley by mass and ion mobility spectrometry[J]. Journal of Mass Spectrometry, 2020, 55(5): e4501.
    [20]
    JIN L, BARRAN P E, DEAKIN J A, LYON M, UHRN D. Conformation of glycosaminoglycans by ion mobility mass spectrometry and molecular modelling[J]. Physical Chemistry Chemical Physics, 2005, 7(19): 3 4643 471.
    [21]
    SCARFF C A, PATEL V J, THALASSINOS K, SCRIVENS J H. Probing hemoglobin structure by means of travelingwave ion mobility mass spectrometry[J]. Journal of the American Society for Mass Spectrometry, 2009, 20(4): 625-631.
    [22]
    BORNSCHEIN R E, HYUNG S J, RUOTOLO B T. Ion mobilitymass spectrometry reveals conformational changes in charge reduced multiprotein complexes[J]. Journal of the American Society for Mass Spectrometry, 2011, 22(10): 1 690.
    [23]
    FASCIOTTI M, SOUZA G H M F, ASTARITA G, COSTA I C R, MONTEIRO T V C, TEIXEIRA C M L L, EBERLIN M N, SARPAL A S. Investigating the potential of ion mobility-mass spectrometry for microalgae biomass characterization[J]. Analytical Chemistry, 2019, 91(14): 9266-9276.
    [24]
    WOBSCHALL D, GRAHAM J R, MALONE D P. Ion cyclotron resonance and the determination of collision cross sections[J]. Physical Review, 1963, 131(4): 1565-1571.
    [25]
    LANGEVIN P. A fundamental formula of kinetic theory[J]. Annales De Chimie Et De Physique, 1905, 5: 245-288.
    [26]
    GUAN S, LI G Z, MARSHALL A G. Effect of ionneutral collision mechanism on the trappedion equation of motion: a new mass spectral line shape for high-mass trapped ions[J]. International Journal of Mass Spectrometry and Ion Processes, 1997(167/168): 185-193.
    [27]
    JIAO C Q, RANATUNGA D R A, VAUGHN W E, FREISER B S. A pulsedleak valve for use with ion trapping mass spectrometers[J]. Journal of the American Society for Mass Spectrometry, 1996, 7(1): 118-122.
    [28]
    GUO D, XIN Y, LI D, XU W. Collision cross section measurements for biomolecules within a highresolution FT-ICR cell: theory[J]. Physical Chemistry Chemical Physics, 2015, 17(14): 9060-9067.
    [29]
    FORNELLI L, DURBIN K R, FELLERS R T, EARLY B P, KELLEHER N L. Advancing topdown analysis of the human proteome using a benchtop quadrupole-orbitrap mass spectrometer[J]. Journal of Proteome Research, 2017, 16(2): 609-618.
    [30]
    YANG F, JONES C A, DEARDEN D V. Effects of kinetic energy and collision gas on measurement of cross sections by Fourier transform ion cyclotron resonance mass spectrometry[J]. International Journal of Mass Spectrometry, 2015, 378: 143-150.
    [31]
    GUO D, WANG Y, XIONG X, ZHANG H, ZHANG X, YUAN T, FANG X, XU W. Space charge induced nonlinear effects in quadrupole ion traps[J]. Journal of the American Society for Mass Spectrometry, 2014, 25(3): 498-508.
    [32]
    WOBSCHALL D, FLUEGGE R A, GRAHAM J R. Collision cross sections of hydrogen and other ions as determined by ion cyclotron resonance[J]. The Journal of Chemical Physics, 1967, 47(10): 4091-4094.
    [33]
    MARSHALL A G, COMISAROW M B, PARISOD G. Relaxation and spectral line shape in Fourier transform ion resonance spectroscopy[J]. The Journal of Chemical Physics, 1979, 71(11): 4434-4444.
    [34]
    YANG F, VOELKEL J E, DEARDEN D V. Collision cross sectional areas from analysis of fourier transform ion cyclotron resonance line width: a new method for characterizing molecular structure[J]. Analytical Chemistry, 2012, 84(11): 4851-4857.
    [35]
    ANUPRIYA, JONES C A, DEARDEN D V. Collision cross sections for 20 protonated amino acids: Fourier transform ion cyclotron resonance and ion mobility results[J]. Journal of the American Society for Mass Spectrometry, 2016, 27(8): 1366-1375.
    [36]
    POPE B L, JOAQUIN D, HICKEY J T, MISMASH N, HERAVI T, SHRESTHA J, ARSLANIAN A J, ANUPRIYA, MORTENSEN D N, DEARDEN D V. Multi-CRAFTI: relative collision cross sections from Fourier transform ion cyclotron resonancemass spectrometric line width measurements[J]. Journal of the American Society for Mass Spectrometry, 2022, 33(1): 131-140.
    [37]
    JIANG T, CHEN Y, MAO L, MARSHALL A G, XU W. Extracting biomolecule collision cross sections from the highresolution FT-ICR mass spectral linewidths[J]. Physical Chemistry Chemical Physics, 2016, 18(2): 713-717.
    [38]
    TANG Y, LI D, CAO D, XU W. Extracting biomolecule collision cross sections from FTICR mass spectral line shape[J]. Talanta, 2019, 205: 120 093.
    [39]
    MAO L, CHEN Y, XIN Y, CHEN Y, ZHENG L, KAISER N K, MARSHALL A G, XU W. Collision cross section measurements for biomolecules within a high-resolution Fourier transform ion cyclotron resonance cell[J]. Analytical Chemistry, 2015, 87(8): 4072-4075.
    [40]
    COMISAROW M B, MELKA J D. Error estimates for finite zerofilling in Fourier transform spectrometry[J]. Analytical Chemistry, 1979, 51(13): 2198-2203.
    [41]
    LI D, TANG Y, FEI W, JIANG T, XU W. Timefrequency analysis of Fourier transform mass spectrometry data by the hilbert transformbased time-domain method[J]. International Journal of Mass Spectrometry, 2020, 457: 116 432.
    [42]
    HU M, ZHANG L, HE S, XU C, SHI Q. Collision cross section (CCS) measurement by ion cyclotron resonance mass spectrometry with short-time Fourier transform[J]. Rapid Communications in Mass Spectrometry, 2018, 32(9): 751-761.
    [43]
    SCIGELOVA M, MAKAROV A. Orbitrap mass analyzeroverview and applications in proteomics[J]. Proteomics, 2006, 6(S2): 16-21.
    [44]
    BAIDOO E E K, TEIXEIRA B V. Mass spectrometrybased microbial metabolomics: techniques, analysis, and applications[J]. Microbial Metabolomics, 2019, 1 859: 11-69.
    [45]
    MAKAROV A, DENISOV E. Dynamics of ions of intact proteins in the Orbitrap mass analyzer[J]. Journal of the American Society for Mass Spectrometry, 2009, 20(8): 1486-1495.
    [46]
    AIZIKOV K, GRINFELD D, DAMOC E, MAKAROV A. Putting scattering to the right usediscrimination of ionic species of different sizes by the decay rate in FTM acknowledgements[C]. Proceedings of the 62nd ASMS Conference on Mass Spectrometry and Allied Topics, Baltimore, United States, 2014.
    [47]
    SANDERS J D, GRINFELD D, AIZIKOV K, MAKAROV A, HOLDEN D D, BRODBELT J S. Determination of collision crosssections of protein ions in an Orbitrap mass analyzer[J]. Analytical Chemistry, 2018, 90(9): 5896-5902.
    [48]
    HE M, GUO D, FENG Y, XIONG X, ZHANG H, FANG X, XU W. Realistic modeling of ionneutral collisions in quadrupole ion traps[J]. Journal of Mass Spectrometry, 2015, 50(1): 95-102.
    [49]
    HE M, GUO D, CHEN Y, XIONG X, FANG X, XU W. Ion collision crosssection measurements in quadrupole ion traps using a timefrequency analysis method[J]. Analyst, 2014, 139(23): 6144-6153.
    [50]
    JIANG T, HE M, GUO D, ZHAI Y, XU W. Ion collision cross section analyses in quadrupole ion traps using the filter diagonalization method: a theoretical study[J]. Physical Chemistry Chemical Physics, 2016, 18(17): 12058-12064.
    [51]
    XIONG C, LIU H, LIU C, XUE J, ZHAN L, NIE Z. Mass, size, and density measurements of microparticles in a quadrupole ion trap[J]. Analytical Chemistry, 2019, 91(21): 13508-13513.
    [52]
    FAN J, LIAN P, LI M, LIU X, ZHOU X, OUYANG Z. Ion mobility separation using a DualLIT miniature mass spectrometer[J]. Analytical Chemistry, 2020, 92(3): 2573-2579.
    [53]
    DZIEKONSKI E T, JOHNSON J T, LEE K W, MCLUCKEY S A. Determination of collision cross sections using a Fourier transform electrostatic linear ion trap mass spectrometer[J]. Journal of the American Society for Mass Spectrometry, 2018, 29(2): 242-250.
    [54]
    ELLIOTT A G, HARPER C C, LIN H W, SUSA A C, XIA Z, WILLIAMS E R. Simultaneous measurements of mass and collisional cross-section of single ions with charge detection mass spectrometry[J]. Analytical Chemistry, 2017, 89(14): 7701-7708.
    [55]
    RICHARDSON K, LANGRIDGE D, DIXIT S M, RUOTOLO B T. An improved calibration approach for traveling wave ion mobility spectrometry: robust, highprecision collision cross sections[J]. Analytical Chemistry, 2021, 93(7): 3542-3550.

Catalog

    Article views (222) PDF downloads (230) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return