Citation: | LIU Juan, LU Ying-jie, HUANG Yi-man, SU Yue, GUO Yin-long. Recent Advances in Small Molecule Metabolites Analysis by Ion Mobility-Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2022, 43(5): 533-551. DOI: 10.7538/zpxb.2022.0074 |
[1] |
SINCLAIR E, HOLLYWOOD K A, YAN C Y, BLANKLEY R, BREITLING R, BARRAN P. Mobilising ion mobility mass spectrometry for metabolomics[J]. Analyst, 2018, 143(19): 4783-4788.
|
[2] |
ODENKIRK M T, BAKER E S. PAGLIA G, ASTARITA G. Ion mobility-mass spectrometry: methods and protocols[M]. New York: Springer US, 2020: 35-54.
|
[3] |
LUAN H, WANG X, CAI Z. Mass spectrometry-based metabolomics: targeting the crosstalk between gut microbiota and brain in neurodegenerative disorders[J]. Mass Spectrom Review, 2019, 38(1): 22-33.
|
[4] |
DUNN W B, ELLIS D I. Metabolomics: current analytical platforms and methodologies[J]. Trac-Trends in Analytical Chemistry, 2005, 24(4): 285-294.
|
[5] |
MORRISON K A, CLOWERS B H. Fundamentals and applications of incorporating chromatographic separations with ion mobility-mass spectrometry[J]. Trac-Trends in Analytical Chemistry, 2019, 119: 15 625.
|
[6] |
XU M J, WANG G J, XIE H T, WANG R, WANG W, LI X Y, LI H, ZHU D N, YUE L. Determination of schizandrin in rat plasma by high-performance liquid chromatography-mass spectrometry and its application in rat pharmacokinetic studies[J]. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2005, 828(1/2): 55-61.
|
[7] |
FURUHASHI T, OKUDA K. Application of GC/MS soft ionization for isomeric biological compound analysis[J]. Critical Reviews in Analytical Chemistry, 2017, 47(5): 438-453.
|
[8] |
KANU A B, DWIVEDI P, TAM M, MATZ L, HILL H H. Ion mobility-mass spectrometry[J]. Journal of Mass Spectrometry, 2008, 43(1): 1-22.
|
[9] |
LATIF M, ZHANG D, GAMEZ G. Flowing atmospheric-pressure afterglow drift tube ion mobility spectrometry[J]. Analytica Chimica Acta, 2021, 1163: 338 507.
|
[10] |
RUTHERFORD E. The velocity and rate of recombination of the ions of gases exposed to rntgen radiation[J]. Philosophical Magazine, 1953, 44(270): 422-440.
|
[11] |
JOHAN W. Ionization of gas: US, US2264495[P]. 1941-12-02.
|
[12] |
VERBLUNSKY S. On a fundamental formula of potential theory[J]. Journal of the London Mathematical Society, 1951(1): 25-30.
|
[13] |
FRANCIS W, KARASE K. Plasma chromatography[J]. Analytical Chemistry, 1974, 46(8): 710-720.
|
[14] |
FORBES T P, NAJARRO M. Ion mobility spectrometry nuisance alarm threshold analysis for illicit narcotics based on environmental background and a roc-curve approach[J]. Analyst, 2016, 141(14): 4438-4446.
|
[15] |
BUXTON T L, HARRINGTON P D. Rapid multivariate curve resolution applied to identification of explosives by ion mobility spectrometry[J]. Analytica Chimica Acta, 2001, 434(2): 269-282.
|
[16] |
SETO Y, HASHIMOTO R, TANIGUCHI T, OHRUI Y, NAGOYA T, IWAMATSU T, KOMARU S, USUI D, MORIMOTO S, SAKAMOTO Y, ISHIZAKI A, NISHIDE T, INOUE Y, SUGIYAMA H, NAKANO N. Development of ion mobility spectrometry with novel atmospheric electron emission ionization for field detection of gaseous and blister chemical warfare agents[J]. Analytical Chemistry, 2019, 91(8): 5403-5414.
|
[17] |
HAO C, NOESTHEDEN M R, ZHAO X, MORSE D. Liquid chromatography-tandem mass spectrometry analysis of neonicotinoid pesticides and 6-chloronicotinic acid in environmental water with direct aqueous injection[J]. Analytica Chimica Acta, 2016, 925: 43-50.
|
[18] |
KIRK A T, BOHNHORST A, RADDATZ C R, ALLERS M, ZIMMERMANN S. Ultra-high-resolution ion mobility spectrometry-current instrumentation, limitations, and future developments[J]. Analytical and Bioanalytical Chemistry, 2019, 411(24): 6229-6246.
|
[19] |
BARNES W S, MARTIN D W, MCDANIEL E W. Mass spectrographic identification of the ion observed in hydrogen mobility experiments[J]. Physical Review Letters, 1961, 6(3): 110-111.
|
[20] |
IBRAHIM Y M, GARIMELLA S V B, PROST S A, WOJCIK R, NORHEIM R V, BAKER E S, RUSYN I, SMITH R D. Development of an ion mobility spectrometry-orbitrap mass spectrometer platform[J]. Analytical Chemistry, 2016, 88(24): 12152-12160.
|
[21] |
LI J, GAO W, WU H, SHI S, YU J, TANG K. On the resolution, sensitivity and ion transmission efficiency of a planar FAIMS[J]. International Journal of Mass Spectrometry, 2022, 471: 116 727.
|
[22] |
PUKALA T. Importance of collision cross section measurements by ion mobility mass spectrometry in structural biology[J]. Rapid Communications in Mass Spectrometry, 2019, 33: 72-82.
|
[23] |
PRINGLE S D, GILES K, WILDGOOSE J L, WILLIAMS J P, SLADE S E, THALASSINOS K, BATEMAN R H, BOWERS M T, SCRIVENS J H. An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/OA-TOF instrument[J]. International Journal of Mass Spectrometry, 2007, 261(1): 1-12.
|
[24] |
PAGLIA G, SMITH A J, ASTARITA G. Ion mobility mass spectrometry in the omics era: challenges and opportunities for metabolomics and lipidomics[J]. Mass Spectrometry Reviews, 2021, doi: 10.1002/mas.21686.
|
[25] |
MCCANN A, KUNE C, LA R R, OETJEN J, ARIAS A A, ONGENA M, FAR J, EPPE G, QUINTON L, de PAUW E. Rapid visualization of lipopeptides and potential bioactive groups of compounds by combining ion mobility and MALDI imaging mass spectrometry[J]. Drug Discovery Today: Technologies, 2021, 39: 81-88.
|
[26] |
LLOYD W O H, RIJS N J. Reaction monitoring and structural characterisation of coordination driven self-assembled systems by ion mobility-mass spectrometry[J]. Frontiers in Chemistry, 2021, doi: 10.3389/fchem.2021.682743.
|
[27] |
LANUCARA F, HOLMAN S W, GRAY C J, EYERS C E. The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics[J]. Nature Chemistry, 2014, 6(4): 281-294.
|
[28] |
MAY J C, GOODWIN C R, MCLEAN J A. Ion mobility-mass spectrometry strategies for untargeted systems, synthetic, and chemical biology[J]. Current Opinion in Biotechnology, 2015, 31: 117-121.
|
[29] |
BAKER E S, LIVESAY E A, ORTON D J, MOORE R J, DANIELSON W F, PRIOR D C, IBRAHIM Y M, LAMARCHE B L, MAYAMPURATH A M, SCHEPMOES A A, HOPKINS D F, TANG K, SMITH R D, BELOV M E. An LC-IMS-MS platform providing increased dynamic range for high-throughput proteomic studies[J]. Journal of Proteome Research, 2010, 9(2): 997-1006.
|
[30] |
JIA L, ZUO T, ZHANG C, LI W, WANG H, HU Y, WANG X, QIAN Y, YANG W, YU H. Simultaneous profiling and holistic comparison of the metabolomes among the flower buds of panax ginseng, panax quinquefolius, and panax notoginseng by UHPLC/IM-QTOF-HDMSE-based metabolomics analysis[J]. Molecules, 2019, 24: 2188.
|
[31] |
MONTERO L, SCHMITZ O J, MECKELMANN S W. Chemical characterization of eight herbal liqueurs by means of liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry[J]. Journal of Chromatography A, 2020, 1 631: 461 560.
|
[32] |
GARCíA-NICOL-S M, ARROYO-MANZANARES N, HERN-NDEZ J D D, GUILLN I, VIAS P. Ion mobility spectrometry and mass spectrometry coupled to gas chromatography for analysis of microbial contaminated cosmetic creams[J]. Analytica Chimica Acta, 2020, 1 128: 52-61.
|
[33] |
WU X, ZHANG Y, QIN R, LI P, WEN Y, YIN Z, ZHANG Z, XU H. Discrimination of isomeric monosaccharide derivatives using collision-induced fingerprinting coupled to ion mobility mass spectrometry[J]. Talanta, 2021, 224: 121 901.
|
[34] |
JIN C, HARVEY D J, STRUWE W B, KARLSSON N G. Separation of isomeric O-glycans by ion mobility and liquid chromatography-mass spectrometry[J]. Analytical Chemistry, 2019, 91(16): 10604-10613.
|
[35] |
XIE C Y, LI L, WU Q D, GUAN P F, WANG C L, YU J C, TANG K Q. Effective separation of carbohydrate isomers using metal cation and halogen anion complexes in trapped ion mobility spectrometry[J]. Talanta, 2021, 225: 121 903.
|
[36] |
CHEN X, YIN Y, ZHOU Z, LI T, ZHU Z. Development of a combined strategy for accurate lipid structural identification and quantification in ion-mobility mass spectrometry based untargeted lipidomics[J]. Analytica Chimica Acta, 2020, 1 136: 115-124.
|
[37] |
WORMWOOD M K L, van AKEN G, DEBORD D, HATCHER N G, MAXON L, SHERMAN M, YAO L, EKROOS K. High-defined quantitative snapshots of the ganglioside lipidome using high resolution ion mobility slim assisted shotgun lipidomics[J]. Analytica Chimica Acta, 2021, 1 146: 77-87.
|
[38] |
LEAPTROT K L, MAY J C, DODDS J N, MCLEAN J A. Ion mobility conformational lipid atlas for high confidence lipidomics[J]. Nature Communications, 2019, 10: 9.
|
[39] |
VENTER P, CAUSON T, PASCH H, de VILLIERS A. Comprehensive analysis of chestnut tannins by reversed phase and hydrophilic interaction chromatography coupled to ion mobility and high resolution mass spectrometry[J]. Analytica Chimica Acta, 2019, 1 088: 150-167.
|
[40] |
NYS G, COBRAIVILLE G, FILLET M. Multidimensional performance assessment of micro pillar array column chromatography combined to ion mobility-mass spectrometry for proteome research[J]. Analytica Chimica Acta, 2019, 1086: 1-13.
|
[41] |
CAUSON T J, IVANOVA-PETROPULOS V, PETRUSHEVA D, BOGEVA E, HANN S. Fingerprinting of traditionally produced red wines using liquid chromatography combined with drift tube ion mobility-mass spectrometry[J]. Analytica Chimica Acta, 2019, 1 052: 179-189.
|
[42] |
MULLIN L, JOBST K, DILORENZO R A, PLUMB R, REINER E J, YEUNG L W Y, JOGSTEN I E. Liquid chromatography-ion mobility-high resolution mass spectrometry for analysis of pollutants in indoor dust: identification and predictive capabilities[J]. Analytica Chimica Acta, 2020, 1 125: 29-40.
|
[43] |
EICEMAN G A, NAZAROV E G, RODRIGUEZ J E, STONE J A. Analysis of a drift tube at ambient pressure: models and precise measurements in ion mobility spectrometry[J]. Review of Scientific Instruments, 2001, 72(9): 3610-3621.
|
[44] |
SHVARTSBURG A A, SMITH R D. Fundamentals of traveling wave ion mobility spectrometry[J]. Analytical Chemistry, 2008, 80(24): 9689-9699.
|
[45] |
SHVARTSBURG A A, TANG K Q, SMITH R D. Understanding and designing field asymmetric waveform ion mobility spectrometry separations in gas mixtures[J]. Analytical Chemistry, 2004, 76(24): 7366-7374.
|
[46] |
CREASER C S, BENYEZZAR M, GRIFFITHS J R, STYGALL J W. A tandem ion trap/ion mobility spectrometer[J]. Analytical Chemistry, 2000, 72(13): 2724-2729.
|
[47] |
GILES K, UJMA J, WILDGOOSE J, PRINGLE S, RICHARDSON K, LANGRIDGE D, GREEN M. A cyclic ion mobility-mass spectrometry system[J]. Analytical Chemistry, 2019, 91(13): 8564-8573.
|
[48] |
GARIMELLA S V B, IBRAHIM Y M, WEBB I K, TOLMACHEV A V, ZHANG X, PROST S A, ANDERSON G A, SMITH R D. Simulation of electric potentials and ion motion in planar electrode structures for lossless ion manipulations (slim)[J]. Journal of the American Society for Mass Spectrometry, 2014, 25(11): 1890-1896.
|
[49] |
WANG K K, QIU R, ZHANG X Q, GILLIG K J, SUN W J. U-shaped mobility analyzer: a compact and high-resolution counter-flow ion mobility spectrometer[J]. Analytical Chemistry, 2020, 92(12): 8356-8363.
|
[50] |
MAY J C, MCLEAN J A. Ion mobility-mass spectrometry: time-dispersive instrumentation[J]. Analytical Chemistry, 2015, 87(3): 1422-1436.
|
[51] |
PANG B, ZHUANG X, BIAN X, LIU S, LIU Z, SONG F. Studies on the cross-interaction between hiapp and a beta(25-35) and the aggregation process in binary mixture by electrospray ionization-ion mobility-mass spectrometry[J]. Journal of Mass Spectrometry, 2020, 55(10): e4643.
|
[52] |
BOUZA M, LI Y F, WANG A C, WANG Z L, FERNANDEZ F M. Triboelectric nanogenerator ion mobility-mass spectrometry for in-depth lipid annotation[J]. Analytical Chemistry, 2021, 93(13): 5468-5475.
|
[53] |
MYUNG S, WISEMAN J M, VALENTINE S J, TAKATS Z, COOKS R G, CLEMMER D E. Coupling desorption electrospray ionization with ion mobility/mass spectrometry for analysis of protein structure: evidence for desorption of folded and denatured states[J]. Journal of Physical Chemistry B, 2006, 110(10): 5045-5051.
|
[54] |
SISLEY E K, UJMA J, PALMER M, GILES K, FERNANDEZ-LIMA F A, COOPER H J. Lesa cyclic ion mobility mass spectrometry of intact proteins from thin tissue sections[J]. Analytical Chemistry, 2020, 92(9): 6321-6326.
|
[55] |
BIEN T, HAMBLETON E A, DREISEWERD K, SOLTWISCH J. Molecular insights into symbiosis-mapping sterols in a marine flatworm-algae-system using high spatial resolution MALDI-2-MS imaging with ion mobility separation[J]. Analytical and Bioanalytical Chemistry, 2021, 413(10): 2767-2777.
|
[56] |
MASON E A, MCDANIEL E W. Transport properties of ions in gases[M]. NASA STI/Recon Technical Report A, 1988.
|
[57] |
MAY J C, GOODWIN C R, LAREAU N M, LEAPTROT K L, MORRIS C B, KURULUGAMA R T, MORDEHAI A, KLEIN C, BARRY W, DARLAND E, OVERNEY G, IMATANI K, STAFFORD G C, FJELDSTED J C, MCLEAN J A. Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer[J]. Analytical Chemistry, 2014, 86(4): 2107-2116.
|
[58] |
HERNANDEZ-MESA M, LE B B, MONTEAU F, GARCIA-CAMPANA A M, DERVILLY-PINEL G. Collision cross section (CCS) database: an additional measure to characterize steroids[J]. Analytical Chemistry, 2018, 90(7): 4616-4625.
|
[59] |
RIGHETTI L, BERGMANN A, GALAVERNA G, ROLFSSON O, PAGLIA G, DALL′ASTA C. Ion mobility-derived collision cross section database: application to mycotoxin analysis[J]. Analytica Chimica Acta, 2018, 1014: 50-57.
|
[60] |
ZHOU Z, TU J, ZHU Z. Advancing the large-scale CCS database for metabolomics and lipidomics at the machine-learning era[J]. Current Opinion in Chemical Biology, 2018, 42: 34-41.
|
[61] |
MASON E A, SCHAMP H W. Mobility of gaseous ions in weak electric fields[J]. Annals of Physics, 1958, 4(3): 233-270.
|
[62] |
SHRIVASTAV V, NAHIN M, HOGAN C J, LARRIBA-ANDALUZ C. Benchmark comparison for a multi-processing ion mobility calculator in the free molecular regime[J]. Journal of the American Society for Mass Spectrometry, 2017, 28(8): 1540-1551.
|
[63] |
CAMPUZANO I D G, GILES K. Historical, current and future developments of travelling wave ion mobility mass spectrometry: a personal perspective[J]. Trac-Trends in Analytical Chemistry, 2019, 120: 115 620.
|
[64] |
LI G, DELAFIELD D G, LI L. Improved structural elucidation of peptide isomers and their receptors using advanced ion mobilitymass spectrometry[J]. Trac-Trends in Analytical Chemistry, 2020, 124: 115 646.
|
[65] |
HIRCHE F, SCHRODER A, KNOTH B, STANGL G I, EDER K. Effect of dietary methionine on plasma and liver cholesterol concentrations in rats and expression of hepatic genes involved in cholesterol metabolism[J]. British Journal of Nutrition, 2006, 95(5): 879-888.
|
[66] |
TAYLOR L, CURTHOYS N P. Glutamine metabolism: role in acid-base balance[J]. Biochemistry & Molecular Biology Education, 2010, 32(5): 291-304.
|
[67] |
CASETTA B, TAGLIACOZZI D, SHUSHAN B, FEDERICI G. Development of a method for rapid quantitation of amino acids by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in plasma[J]. Clinical Chemistry & Laboratory Medicine, 2000, 38(5): 391-401.
|
[68] |
GUO S, ZHANG F, WANG H, ZHANG M, ZHANG Z, ZHANG X, GUO Y. Behaviors of leucine and isoleucine in ion mobility-quadrupole time of flight mass spectrometry[J]. Chinese Journal of Chemistry, 2015, 33(12): 1359-1364.
|
[69] |
GRISHIN D V, ZHDANOV D D, POKROVSKAYA M V, SOKOLOV N N. D-Amino acids in nature, agriculture and biomedicine[J]. All Life, 2019, 13(1): 11-22.
|
[70] |
BASTINGS J J A J, EIJK H M V, DAMINK S W O, RENSEN S S. D-Amino acids in health and disease: a focus on cancer[J]. Nutrients, 2019, 11(9): 2 205.
|
[71] |
PIRKLE W H, POCHAPSKY T C. Considerations of chiral recognition relevant to the liquid-chromatographic separation of enantiomers[J]. Chemical Reviews, 1989, 89(2): 347-362.
|
[72] |
MILLER L, YUE L. Chiral separation of underivatized amino acids in supercritical fluid chromatography with chiral crown ether derived column[J]. Chirality, 2020, 32(7): 981-989.
|
[73] |
SUBRAMANIYAM V, RAVI P V, PICHUMANI M. Structure co-ordination of solitary amino acids as ligands in metal-organic frameworks (MOFs): a comprehensive review[J]. Journal of Molecular Structure, 2022, 1 251: 131 931.
|
[74] |
YU X, YAO Z. Chiral differentiation of amino acids through binuclear copper bound tetramers by ion mobility mass spectrometry[J]. Analytica Chimica Acta, 2017, 981: 62-70.
|
[75] |
DOMALAIN V, HUBERT-ROUX M, TOGNETTI V, JOUBERT L, LANGE C M, ROUDEN J, AFONSO C. Enantiomeric differentiation of aromatic amino acids using traveling wave ion mobility-mass spectrometry[J]. Chemical Science, 2014, 5(8): 3234-3239.
|
[76] |
BERTHIAS F, WANG Y, ALHAJJI E, RIEUL B, MOUSSA F, BENOIST J, MAITRE P. Identification and quantification of amino acids and related compounds based on differential mobility spectrometry[J]. Analyst, 2020, 145(14): 4889-4900.
|
[77] |
HOLNESS H K, JAMAL A, MEBEL A, ALMIRALL J R. Separation mechanism of chiral impurities, ephedrine and pseudoephedrine, found in amphetamine-type substances using achiral modifiers in the gas phase[J]. Anal Bioanal Chem, 2012, 404(8): 2407-2416.
|
[78] |
ZHANG J D, KABIR K M M, DONALD W A. Metal-ion free chiral analysis of amino acids as small as proline using highdefinition differential ion mobility mass spectrometry[J]. Analytica Chimica Acta, 2018, 1 036: 172-178.
|
[79] |
XIE C Y, GU L C, WU Q D, LI L, WANG C L, YU J C, TANG K Q. Effective chiral discrimination of amino acids through oligosaccharide incorporation by trapped ion mobility spec-trometry[J]. Analytical Chemistry, 2021, 93(2): 859-867.
|
[80] |
NAGY G, CHOUINARD C D, ATTAH I K, WEBB I K, GARIMELLA S V B, IBRAHIM Y M, SMITH R D, BAKER E S. Distinguishing enantiomeric amino acids with chiral cyclodextrin adducts and structures for lossless ion manipulations[J]. Electrophoresis, 2018, 39(24): 3148-3155.
|
[81] |
PEREZ-MIGUEZ R, BRUYNEEL B, CASTRO-PUYANA M, LUISA M M, SOMSEN G W, DOMINGUEZ-VEGA E. Chiral discrimination of dl-amino acids by trapped ion mobility spectrometry after derivatization with (+)-1-(9-fluorenyl)ethyl chloroformate[J]. Analytical Chemistry, 2019, 91(5): 3277-3285.
|
[82] |
WILL J M, BEHRENS A, MACKE M, QUARLES C D, KARST U. Automated chiral analysis of amino acids based on chiral derivatization and trapped ion mobility-mass spectrometry[J]. Analytical Chemistry, 2021, 93(2): 878-885.
|
[83] |
LI Y, ZHOU B, WANG K, ZHANG J, SUN W, ZHANG L, GUO Y. Powerful steroid-based chiral selector for high-throughput enantiomeric separation of alpha-amino acids utilizing ion mobility-mass spectrometry[J]. Analytical Chemistry, 2021, 93(40): 13589-13596.
|
[84] |
LI G, DELAFIELD D G, LI L. Improved structural elucidation of peptide isomers and their receptors using advanced ion mobility-mass spectrometry[J]. TrAC-Trends in Analytical Chemistry, 2020, 124: 115 546.
|
[85] |
LESUR A, SCHMIT P O, BERNARDIN F, LETELLIER E, BREHMER S, DECKER J, DITTMAR G. Highly multiplexed targeted proteomics acquisition on a tims-QTOF[J]. Analytical Chemistry, 2021, 93(3): 1383-1392.
|
[86] |
MUKHERJEE S, PEREZ K A, LAGO L C, KLATT S, ROBERTS B R. Quantification of n-terminal amyloid-β isoforms reveal isomers are the most abundant form of the amyloid-β peptide in sporadic alzheimer′s disease[J]. Brain Communications, 2021, 3(2): fcab028.
|
[87] |
NAGY G, KEDIA K, ATTAH I K, GARIMELLA S V B, IBRAHIM Y M, PETYUK V A, SMITH R D. Separation of beta-amyloid tryptic peptide species with isomerized and racemized l-aspartic residues with ion mobility in structures for lossless ion manipulations[J]. Analytical Chemistry, 2019, 91(7): 4374-4380.
|
[88] |
LI G, DELANEY K, LI L. Molecular basis for chirality-regulated a beta self-assembly and receptor recognition revealed by ion mobility-mass spectrometry[J]. Nature Communications, 2019, 10(1): 1-11.
|
[89] |
NAGY G, ATTAH I K, CONANT C R, LIU W, GARIMELLA S V B, GUNAWARDENA H P, SHAW J B, SMITH R D, IBRAHIM Y M. Rapid and simultaneous characterization of drug conjugation in heavy and light chains of a monoclonal antibody revealed by high-resolution ion mobility separations in slim[J]. Analytical Chemistry, 2020, 92(7): 5004-5012.
|
[90] |
ZHENG X, SMITH R D, BAKER E S. Recent advances in lipid separations and structural elucidation using mass spectrometry combined with ion mobility spectrometry, ion-molecule reactions and fragmentation approaches[J]. Current Opinion in Chemical Biology, 2018, 42: 111-118.
|
[91] |
KLIMAN M, MAY J C, MCLEAN J A. Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry[J]. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, 2011, 1 811(11): 935-945.
|
[92] |
POAD B L J, MARSHALL D L, HARAZIM E, GUPTA R, NARREDDULA V R, YOUNG R S E, DUCHOSLAV E, CAMPBELL J L, BROADBENT J A, CVACKA J, MITCHELL T W, BLANKSBY STEPHEN J. Combining charge-switch derivatization with ozone-induced dissociation for fatty acid analysis[J]. Journal of the American Society for Mass Spectrometry, 2019, 30(10): 2135-2143.
|
[93] |
THOMAS M C, MITCHELL T W, HARMAN D G, DEELEY J M, MURPHY R C, BLANKSBY S J. Elucidation of double bond position in unsaturated lipids by ozone electrospray ionization mass spectrometry[J]. Analytical Chemistry, 2007, 79(13): 5013-5022.
|
[94] |
HARRIS R A, MAY J C, STINSON C A, XIA Y, MCLEAN J A. Determining double bond position in lipids using online ozonolysis coupled to liquid chromatography and ion mobility-mass spectrometry[J]. Analytical Chemistry, 2018, 90(3): 1915-1924.
|
[95] |
MA X, ZHAO X, LI J, ZHANG W, CHENG J, OUYANG Z, XIA Y. Photochemical tagging for quantitation of unsaturated fatty acids by mass spectrometry[J]. Analytical Chemistry, 2016, 88(18): 8931-8935.
|
[96] |
ZHANG J, TAO W, COOKS R G. Facile determination of double bond position in unsaturated fatty acids and esters by low temperature plasma ionization mass spectrometry[J]. Analytical Chemistry, 2011, 83(12): 4738-4744.
|
[97] |
MA X, XIA Y. Pinpointing double bonds in lipids by Patern-Büchi reactions and mass spec-trometry[J]. Angewandte Chemie, 2014, 53(10): 2592-2596.
|
[98] |
SELLIN J, FÜLLE J B, THIELE C, BAUER R, BÜLOW M H. Free fatty acid determination as a tool for modeling metabolic diseases in drosophila[J]. Journal of Insect Physiology, 2020, 126: 104 090.
|
[99] |
ZHANG F, GUO S, ZHANG M, ZHANG Z, GUO Y. Characterizing ion mobility and collision cross section of fatty acids using electrospray ion mobility mass spectrometry[J]. Journal of Mass Spectrometry, 2015, 50(7): 906-913.
|
[100] |
XIE X, XIA Y. Analysis of conjugated fatty acid isomers by the Paterno-Büchi reaction and trapped ion mobility mass spectrometry[J]. Analytical Chemistry, 2019, 91(11): 7173-7180.
|
[101] |
LENG J, GUAN Q, SUN T, WANG H, CUI J, LIU Q, ZHANG Z, ZHANG M, GUO Y. Direct infusion electrospray ionization-ion mobility-mass spectrometry for comparative profiling of fatty acids based on stable isotope labeling[J]. Analytica Chimica Acta, 2015, 887: 148-154.
|
[102] |
VASILOPOULOU C G, SULEK K, BRUNNER A D, MEITEI N S, MEIER F. Trapped ion mobility spectrometry and pasef enable in-depth lipidomics from minimal sample amounts[J]. Nature Communications, 2020, 11(1): 331.
|
[103] |
范若静,陈秀萍,张芳,张菁,郭寅龙. 液相色谱-离子淌度-四极杆-飞行时间串联质谱法快速检测烟叶中蔗糖酯[J]. 质谱学报,2016,37(4):301-309.
FAN Ruojing, CHEN Xiuping, ZHANG Fang, ZHANG Jing, GUO Yinlong. Fast detection of sucrose esters in tobacco leaf using liquid chromatography coupled with ion mobility-quadrupole/time of flight mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2016, 37(4): 301-309(in Chinese). |
[104] |
ZHOU Z, SHEN X, JIA T, ZHU Z J. Large-scale prediction of collision cross-section values for metabolites in ion mobility-mass spectrometry[J]. Analytical Chemistry, 2016, 88(22): 11084-11091.
|
[105] |
LI T, YIN Y, ZHOU Z, QIU J, LIU W, ZHANG X, HE K, CAI Y, ZHU Z. Ion mobility-based sterolomics reveals spatially and temporally distinctive sterol lipids in the mouse brain[J]. Nature Communications, 2021, 12(1): 1-13.
|
[106] |
ZHOU Z, SHEN X, CHEN X, TU J, XIONG X, ZHU Z. LipidIMMs analyzer: integrating multi-dimensional information to support lipid identification in ion mobility-mass spectrometry based lipidomics[J]. Bioinformatics, 2019, 35(4): 698-700.
|
[107] |
ZHOU Z, LUO M, CHEN X, YIN Y, XIONG X, WANG R, ZHU Z J. Ion mobility collision cross-section atlas for known and unknown metabolite annotation in untargeted metabolo-mics[J]. Nature Communications, 2020, 11(1): 4 334.
|
[108] |
GRIFFITHS W J, WANG Y. Sterolomics in biology, biochemistry, medicine[J]. Trac Trends in Analytical Chemistry, 2019, 120: 115 280.
|
[109] |
ZHOU Z, SHEN X, TU J, ZHU Z. Large-scale prediction of collision cross-section values for metabolites in ion mobility-mass spectrometry[J]. Analytical Chemistry, 2016, 88(22): 11084-11091.
|
[110] |
ZHOU Z, TU J, XIONG X, SHEN X, ZHU Z J. Lipidccs: prediction of collision cross-section values for lipids with high precision to support ion mobility-mass spectrometry-based lipidomics[J]. Anal Chem, 2017, 89(17): 9559-9566.
|
[111] |
COLBY S M, THOMAS D G, NUNEZ J R, BAXTER D J, GLAESEMANN K R, BROWN J M, PIRRUNG M A, GOVIND N, TEEGUARDEN J G, METZ T O, RENSLOW R S. Isicle: a quantum chemistry pipeline for establishing in silico collision cross section libraries[J]. Analytical Chemistry, 2019, 91(7): 4346-4356.
|
[112] |
PLANTE P L, FRANCOVIC-FONTAINE É, MAY J C, MCLEAN J A, BAKER E S, LAVIOLETTE F, MARCHAND M, CORBEIL J. Predicting ion mobility collision cross-sections using a deep neural network: deepccs[J]. Analytical Chemistry, 2019, 91(8): 5191-5199.
|
[113] |
ZHENG X, ALY N A, ZHOU Y, DUPUIS K T, BILBAO A, PAURUS V L, ORTON D J, WILSON R, PAYNE S H, SMITH R D, BAKER E S. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry[J]. Chemical Science, 2017, 8(11): 7724-7736.
|
[114] |
PICACHE J A, ROSE B S, BALINSKI A, LEAPTROT K L, SHERROD S D, MAY J C, MCLEAN J A. Collision cross section compendium to annotate and predict multi-omic compound identities[J]. Chemical Science, 2019, 10(4): 983-993.
|
[115] |
JEANNERET F, TONOLI D, ROSSIER M F, SAUGY M, BOCCARD J, RUDAZ S. Evaluation of steroidomics by liquid chromatography hyphenated to mass spectrometry as a powerful analytical strategy for measuring human steroid perturbations[J]. Journal of Chromatography A, 2016, 1 430: 97-112.
|
[116] |
TEMERDASHEV A, DMITRIEVA E, PODOLSKIY I. Analytics for steroid hormone profiling in body fluids[J]. Microchemical Journal, 2021, 168: 106 395.
|
[117] |
HERNANDEZ-MESA M, D′ATRI V, BARKNOWITZ G, FANUEL M, PEZZATTI J, DREOLIN N, ROPARTZ D, MONTEAU F, VIGNEAU E, RUDAZ S, STEAD S, ROGNIAUX H, GUILLARME D, DERVILLY G, LE BIZEC B. Interlaboratory and interplatform study of steroids collision cross section by traveling wave ion mobility spectrometry[J]. Analytical Chemistry, 2020, 92(7): 5013-5022.
|
[118] |
GRATON J, HERNANDEZ-MESA M, NORMAND S, DERVILLY G, LE QUESTEL J, LE BIZEC B. Characterization of steroids through collision cross sections: contribution of quantum chemistry calculations[J]. Analytical Chemistry, 2020, 92(8): 6034-6042.
|
[119] |
QI W, WANG Y, CAO Y, CAO Y, GUAN Q, SUN T, ZHANG L, GUO Y. Simultaneous analysis of fatty alcohols, fatty aldehydes, and sterols in thyroid tissues by electrospray ionization-ion mobility-mass spectrometry based on charge derivatization[J]. Analytical Chemistry, 2020, 92(13): 8644-8648.
|
[120] |
MADDOX S W, CARIS R H F, BAKER K L, BURKUS-MATESEVAC A, PEVERATI R, CHOUINARD C D. Ozone-induced cleavage of endocyclic CC double bonds within steroid epimers produces unique gas-phase conformations[J]. Journal of the American Society for Mass Spectrometry, 2020, 31(2): 411-417.
|
[121] |
MADDOX S W, OLSEN S S H, VELOSA D C, BURKUS-MATESEVAC A, PEVERATI R, CHOUINARD C D. Improved identification of isomeric steroids using the Paterno-Buchi reaction with ion mobility-mass spectrometry[J]. Journal of the American Society for Mass Spectrometry, 2020, 31(10): 2086-2092.
|
[122] |
ARTHUR K L, TURNER M A, BRAILSFORD A D, KIERNAN A T, COWAN D A, REYNOLDS J C, CREASERJE C S. Rapid analysis of anabolic steroid metabolites in urine by combining field asymmetric waveform ion mobility spectrometry with liquid chromatography and mass spectrometry[J]. Analytical Chemistry, 2017, 89(14): 7431-7437.
|
[123] |
DAVIS D E, LEAPTROT K L, KOOMEN D C, MAY J C, CAVALCANTI G D A, PADILHA M C, PEREIRA H M G, MCLEAN J A. Multidimensional separations of intact phase Ⅱ steroid metabolites utilizing LC-ion mobility-HRMS[J]. Analytical Chemistry, 2021, 93(31): 10990-10998.
|
[124] |
HARVEY D J. Negative ion mass spectrometry for the analysis of N-linked glycans[J]. Mass Spectrometry Reviews, 2020, 39(5/6): 586-679.
|
[125] |
BUTLER K E, KALMAR J G, MUDDIMAN D C, BAKER E S. Utilizing liquid chromatography, ion mobility spectrometry, and mass spectrometry to assess inlight (TM) derivatized N-linked glycans in biological samples[J]. Analytical and Bioanalytical Chemistry, 2022, 414(1): 623-637.
|
[126] |
LI Y, PENG Y, LU H. Advances in analysis of linkage isomers of sialylated N-glycans by mass spectrometry[J]. Acta Chimica Sinica, 2021, 79(6): 705-715.
|
[127] |
HARVEY D J, STRUWE W B, BEHRENS A, VASILJEVIC S, CRISPIN M. Formation and fragmentation of doubly and triply charged ions in the negative ion spectra of neutral N-glycans from viral and other glycoproteins[J]. Analytical and Bioanalytical Chemistry, 2021, 413(29): 7277-7294.
|
[128] |
YENI O, GHARBI A, CHAMBERT S, ROUILLON J, ALLOUCHE A, SCHINDLER B, COMPAGNON I. O-Acetylated sugars in the gas phase: stability, migration, positional isomers and conformation[J]. Physical Chemistry Chemical Physics, 2022, 24(2): 1016-1022.
|
[129] |
ROBERTS D S, MANN M W, MELBY J A, LARSON E J, ZHU Y, BRASIER A R, JIN S, GE Y. Structural O-glycoform heterogeneity of the SARS-CoV-2 spike protein receptor-binding domain revealed by native top-down mass spectrometry[J]. BioRxiv, 2021, 143(31): 12014-12024.
|
[130] |
TORANO J S, AIZPURUA-OLAIZOLA O, WEI N, LI T, UNIONE L, JIMENEZ-OSES G, CORZANA F, SOMOVILLA V J, FALCON-PEREZ J M, BOONS G. Identification of isomeric N-glycans by conformer distribution fingerprinting using ion mobility mass spectrometry[J]. Chemistry, 2021, 27(6): 2149-2154.
|
[131] |
BUSH M F, CAMPUZANO I D G, ROBINSON C V. Ion mobility mass spectrometry of peptide ions: effects of drift gas and calibration strategies[J]. Analytical Chemistry, 2012, 84(16): 7124-7130.
|
[132] |
GRAY C J, MIGAS L G, BARRAN P E, PAGEL K, SEEBERGER P H, EYERS C E, BOONS G, POHL N L B, COMPAGNON I, WIDMALM G, FLITSCH S L. Advancing solutions to the carbohydrate sequencing challenge[J]. Journal of the American Chemical Society, 2019, 141(37): 14463-14479.
|
[133] |
PELLEGRINELLI R P, YUE L, CARRASCOSA E, WARNKE S, BEN F A, RIZZO T R. How general is anomeric retention during collision-induced dissociation of glycans?[J]. Journal of the American Chemical Society, 2020, 142(13): 5948-5951.
|
[134] |
MORRISON K A, CLOWERS B H. Contemporary glycomic approaches using ion mobility-mass spectrometry[J]. Current Opinion in Chemical Biology, 2018, 42: 119-129.
|
[135] |
NAGY G, ATTAH I K, GARIMELLA S V B, TANG K, IBRAHIM Y, BAKER E S, SMITH R D. Unraveling the isomeric heterogeneity of glycans: ion mobility separations in structures for lossless ion manipulations[J]. Chemical Communications, 2018, 54(83): 11701-11704.
|
[136] |
ZHENG X, ZHANG X, SCHOCKER N S, RENSLOW R S, ORTON D J, KHAMSI J, ASHMUS R A, ALMEIDA I C, TANG K, COSTELLO C E, SMITH R D, MICHAEL K, BAKER E S. Enhancing glycan isomer separations with metal ions and positive and negative polarity ion mobility spectrometry-mass spectrometry analyses[J]. Analytical and Bioanalytical Chemistry, 2017, 409(2): 467-476.
|
[137] |
MILLER R L, GUIMOND S E, SCHWORER R, ZUBKOVA O V, TYLER P C, XU Y, LIU J, CHOPRA P, BOONS G, GRABARICS M, MANZ C, HOFMANN J, KARLSSON N G, TURNBULL J E, STRUWE W B, PAGEL K. Shotgun ion mobility mass spectrometry sequencing of heparan sulfate saccharides[J]. Nature Communications, 2020, 11(1): 331.
|
[138] |
LIU J, WANG K, LI Y, ZHOU B, TSENG K, ZHANG X, SU Y, SUN W, GUO Y. Rapid discrimination of citrus reticulata ‘chachi’ by electrospray ionization-ion mobility-high-resolution mass spectrometry[J]. Molecules, 2021, 26(22): 7 015.
|
[139] |
ZHAO J B, ZHANG F, GUO Y L. Quantitative analysis of metabolites at the single-cell level by hydrogen flame desorption ionization mass spectrometry[J]. Analytical Chemistry, 2019, 91(4): 2752-2758.
|
[140] |
MASIKE K, STANDER M A, de VILLIERS A. Recent applications of ion mobility spectrometry in natural product research[J]. Journal of Pharmaceutical and Biomedical Analysis, 2021, 195: 21.
|
[141] |
DEIGNAN J L, MARESCAU B, LIVESAY J C, IYER R K, DE D P P, CEDERBAUM S D, GRODY W W. Increased plasma and tissue guanidino compounds in a mouse model of hyperargininemia[J]. Molecular Genetics and Metabolism, 2008, 93(2): 172-178.
|
[142] |
FAN R J, ZHANG F, CHEN X P, QI W S, GUAN Q, SUN T Q, GUO Y L. High-throughput screening and quantitation of guanidino and ureido compounds using liquid chromatography-drift tube ion mobility spectrometry-mass spectrometry[J]. Analytica Chimica Acta, 2017, 961: 82-90.
|