WANG Xing-yu, GU Wen-yi, ZHANG Fang-li, ZHANG Dan, LI Lin-nan, WANG Zheng-tao, YANG Li. Applications of Direct Analysis in Real-Time Mass Spectrometry in Traditional Chinese Medicines Analysis[J]. Journal of Chinese Mass Spectrometry Society, 2023, 44(4): 461-475. DOI: 10.7538/zpxb.2022.0127
Citation: WANG Xing-yu, GU Wen-yi, ZHANG Fang-li, ZHANG Dan, LI Lin-nan, WANG Zheng-tao, YANG Li. Applications of Direct Analysis in Real-Time Mass Spectrometry in Traditional Chinese Medicines Analysis[J]. Journal of Chinese Mass Spectrometry Society, 2023, 44(4): 461-475. DOI: 10.7538/zpxb.2022.0127

Applications of Direct Analysis in Real-Time Mass Spectrometry in Traditional Chinese Medicines Analysis

More Information
  • Direct analysis in real-time mass spectrometry (DART-MS) is an emerging in-situ ionization mass spectrometry analysis technology in recent years. DART is a non-contact surface desorption ionization technique, which is based on the principle of using helium or nitrogen as the working gas and generating excited high-energy particles by electric discharge. The excited state particles are accelerated by rapid heating and electric force, which instantly ionize the volatile compounds on the surface of the sample to be measured under atmospheric pressure, and then detected by mass spectrometry, thus achieving real-time direct analysis of the sample. DART-MS has the characteristics of simple sample preparation, quick and in-situ analysis. Since DART-MS was reported in 2005, it has become one of the most broadly used direct analysis methods and is extensively applied for the direct analysis of the quality, safety, origin and characteristics of food samples. Besides, it has been widely used in biomedicine, environmental monitoring, public safety, and drug analysis as well. Traditional Chinese medicines (TCMs) have been used for thousands of years in China, which gradually move towards to the world arena. The composition of TCM is very complicated, often containing many different chemical components of different types and properties, such as flavonoids, alkaloids, terpenoids, etc. Therefore, the analysis of the chemical basis of the efficacy and quality evaluation of TCMs are very crucial. In recent years, the development of DART-MS technology has provided many new opportunities for direct and rapid analysis of active ingredients in TCMs. The review was focused on the applications of DART-MS in TCMs, which covered the principle, characteristics, influencing factors and technological progress of DART-MS technology, and systematically summarized the research and application of this technology in TCMs, including qualitative and quantitative analysis. In addition, this review briefly introduced the progress of the application of DART-MS in combination with other techniques, such as thin-layer chromatography, imaging mass spectrometry and solid-phase microextraction in the profiling of TCMs, and provided further perspectives on its application development.
  • [1]
    易伦朝,吴海,梁逸曾. 色谱指纹图谱与中药质量控制[J]. 色谱,2008,26(2):6.
    YI Lunzhao, WU Hai, LIANG Yizeng. Chromatographic fingerprint and quality control of traditional Chinese medicines[J]. Chinese Journal of Chromatography, 2008, 26(2): 6(in Chinese).
    [2]
    DETTMER K, ARONOV P A, HAMMOCK B D. Mass spectrometry-based metabolomics[J]. Mass Spectrometry Reviews, 2007, 26(1): 51-78.
    [3]
    AKSENOV A A, SILVA R D, KNIGHT R, LOPES N P, DORRESTEIN P C. Global chemical analysis of biology by mass spectrometry[J]. Nature Reviews Chemistry, 2017, 1(7): 54.
    [4]
    FENN J, MANN M, MENG C, WONG S, WHITEHOUSE C. Electrospray ionization for mass spectrometry of large biomolecules[J]. Science, 1989, 246(4 926): 64-71.
    [5]
    ROBB D B, COVEY T R, BRUINS A P. Atmospheric pressure photoionization: an ionization method for liquid chromatography-mass spectrometry[J]. Analytical Chemistry, 2000, 72(15): 3653.
    [6]
    DODDS E D, MCCOY M R, REA L D, KENNISH J M. Gas chromatographic quantification of fatty acid methyl esters: flame ionization detection vs. electron impact mass spectrometry[J]. Lipids, 2005, 40(4): 419-428.
    [7]
    TAKATS Z, WISEMAN J M, GOLOGAN B, COOKS R G. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization[J]. Science, 2004, 306(5 695): 471-473.
    [8]
    VENTER A R, DOUGLASS K A, SHELLEY J T, HASMAN G, HONARVAR E. Mechanisms of real-time, proximal sample processing during ambient ionization mass spectrometry[J]. Analytical Chemistry, 2014, 86(1): 233-249.
    [9]
    FEIDER C L, KRIEGER A C, DEHOOG R J, EBERLIN L S. Ambient ionization mass spectrometry: recent developments and applications[J]. Analytical Chemistry, 2019, 91(7): 4266-4290.
    [10]
    CODY R B, LARAMÉE J A, DURST H D. Versatile new ion source for the analysis of materials in open air under ambient conditions[J]. Analytical Chemistry, 2005, 77(8): 2297-2302.
    [11]
    Ac KERMAN L K, NOONAN G O, BEGLEY T H. Assessing direct analysis in real-time-mass spectrometry (DART-MS) for the rapid identification of additives in food packaging[J]. Food Additives & Contaminants, 2009, 26(12): 1611-1618.
    [12]
    GRANGE A H. Semi-quantitative analysis of contaminants in soils by direct analysis in real time (DART) mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2012, 27(2): 305-318.
    [13]
    DANE A J, CODY R B. Selective ionization of melamine in powdered milk by using argon direct analysis in real time (DART) mass spectrometry[J]. The Analyst, 2010, 135(4): 696-699.
    [14]
    GUO T, FANG P, JIANG J, ZHANG F, YONG W, LIU J, DONG Y. Rapid screening and quantification of residual pesticides and illegal adulterants in red wine by direct analysis in real time mass spectrometry[J]. Journal of Chromatography A, 2016, 1 471: 27-33.
    [15]
    HUANG Z, QIU R, LIU T, HUANG Y, ZHU Z, WANG L. Determination of methacrylic acid in food simulants by pyrolytic butylation-gas chromatography[J]. Journal of Chromatography A, 2016, 1 454: 101-106.
    [16]
    KUKI A, NAGY L, NAGY T, ZSUGA M, KEKI S. Detection of nicotine as an indicator of tobacco smoke by direct analysis in real time (DART) tandem mass spectrometry[J]. Atmospheric Environment, 2015, 100: 74-77.
    [17]
    LEI Y T, LU Y, ZHANG T C, QI Y, LU Y F. Rapid screening of testosterone in the aquatic environment using direct analysis in real-time (DART) mass spectrometry[J]. Environmental Earth Sciences, 2016, 75(12): 1-7.
    [18]
    LI F, TICE J, MUSSELMAN B D, HALL A B. A method for rapid sampling and characterization of smokeless powder using sorbent-coated wire mesh and direct analysis in real timemass spectrometry (DART-MS)[J]. Science & Justice, 2016, 56(5): 321-328.
    [19]
    LI H, HITCHINS V M, WICKRAMASEKARA S. Rapid detection of bacterial endotoxins in ophthalmic viscosurgical device materials by direct analysis in real time mass spectrometry[J]. Analytica Chimica Acta, 2016: 98-105.
    [20]
    MUSAH R A, ESPINOZA E O, CODY R B, LESIAK A D, CHRISTENSEN E D, MOORE H E, MALEKNIA S, DRIJFHOUT F P. A high throughput ambient mass spectrometric approach to species identification and classification from chemical fingerprint signatures[J]. Scientific Reports, 2015, 5: 11 520.
    [21]
    WIEMANN M C, CHAVARRIA G D, BARAJAS-MORALES J, ESPINOZA E O, MCCLURE P J. Forensic analysis of cites-protected dalbergia timber from the Americas[J]. Iawa Journal, 2015, 36(3): 311-325.
    [22]
    CUI X Z, WANG R, LIAN R, LIANG C, CHEN G L, ZHANG Y R. Correlation analysis between cocaine samples seized in China by the rapid detection of organic impurities using direct analysis in real time coupled with high-resolution mass spectrometry[J]. International Journal of Mass Spectrometry, 2019, 444: 116 188.
    [23]
    CODY R B. Observation of molecular ions and analysis of nonpolar compounds with the direct analysis in real time ion source[J]. Analytical Chemistry, 2009, 81(3): 1101-1107.
    [24]
    FURUYA H, KAMBARA S, NISHIDATE K, FUJIMAKI S, HASHIMOTO Y, SUZUKI S, IWAMA T, HIRAOKA K. Quantitative aspects of atmospheric-pressure penning ionization[J]. Journal of the Mass Spectrometry Society of Japan, 2010, 58(6): 211-213.
    [25]
    HIRAOKA K, NINOMIYA S, CHEN L C, IWAMA T, MANDAL M K, SUZUKI H. Development of double cylindrical dielectric barrier discharge ion source[J]. Analyst, 2011, 136(6): 1210-1215.
    [26]
    GROSS J. Direct analysis in real time-a critical review on DART-MS[J]. Analytical and Bioanalytical Chemistry, 2014, 406(1): 63-80.
    [27]
    ANDRADE F J, SHELLEY J T, WETZEL W C, WEBB M R, GAMEZ G, RAY S J, HIEFTJE G M. Atmospheric pressure chemical ionization source. 1. Ionization of compounds in the gas phase[J]. Analytical Chemistry, 2008, 80(8): 2646-2653.
    [28]
    SONG L, DYKSTRA A B, YAO H, BARTMESS J E. Ionization mechanism of negative iondirect analysis in real time: a comparative study with negative ionatmospheric pressure photoionization[J]. Journal of the American Society for Mass Spectrometry, 2009, 20(1): 42-50.
    [29]
    JORABCHI K, HANOLD K, SYAGE J. Ambient analysis by thermal desorption atmospheric pressure photoionization[J]. Analytical & Bioanalytical Chemistry, 2013, 405(22): 7011-7018.
    [30]
    VENTER A, NEFLIU M, COOKS R G. Ambient desorption ionization mass spectrometry[J]. TrAC Trends in Analytical Chemistry, 2008, 27(4): 284-290.
    [31]
    SMOLUCH M, MIELCZAREK P, SILBERRING J. Plasmabased ambient ionization mass spectrometry in bioanalytical sciences[J]. Mass Spectrometry Reviews, 2016(1): 22-34.
    [32]
    XU S, ZHANG Y, XU L, BAI Y, LIU H. Online coupling techniques in ambient mass spec-trometry[J]. The Analyst, 2016, 141(21): 5913-5921.
    [33]
    GROSS J H. Direct analysis in real time-a critical review on DART-MS[J]. Analytical and Bioanalytical Chemistry, 2014, 406(1): 63-80.
    [34]
    LI L, WANG Q, LI W, YAO Y N, HU B. Comprehensive comparison of ambient mass spectrometry with desorption electrospray ionization and direct analysis in real time for direct sample analysis[J]. Talanta, 2019, 203: 140-146.
    [35]
    HAJSLOVA J, CAJKA T, VACLAVIK L. Challenging applications offered by direct analysis in real time (DART) in food-quality and safety analysis[J]. Trac Trends in Analytical Chemistry, 2011, 30(2): 204-218.
    [36]
    刘喆,迟鸿悦,赵彩秀,黄鑫,郭云龙,刘淑莹. DART-Q-Orbitrap MS法快速检测豆制品中碱性橙Ⅱ和金胺O[J]. 质谱学报,2019,40(1):42-49.
    LIU Zhe, CHI Hongyue, ZHAO Caixiu, HUANG Xin, GUO Yunlong, LIU Shuying. Rapid qualitative and quantitative analysis of basic orange Ⅱ and auramine O in bean products by DART-Q-Orbitrap MS[J]. Journal of Chinese Mass Spectrometry Society, 2019, 40(1): 42-49(in Chinese).
    [37]
    YANG H M, WAN D B, SONG F R, LIU Z Q, LIU S Y. Argon direct analysis in real time mass spectrometry in conjunction with makeup solvents: a method for analysis of labile compounds[J]. Analytical Chemistry, 2013, 85(3): 1305-1309.
    [38]
    陈志永,崔小敏,胡静,任慧. 实时直接分析质谱法快速鉴别大果飞蛾藤药材[J]. 西部中医药,2021,34(2):32-34.
    CHEN Zhiyong, CUI Xiaomin, HU Jing, REN Hui. Rapid identification of Daguo Feieteng by DART-MS[J]. Western Journal of Traditional Chinese Medicine, 2021, 34(2): 32-34(in Chinese).
    [39]
    孙雨安,柯玮,李振兴,杨然存,王国庆. DARTOrbitrap质谱法快速筛查饲料中磺胺类药物[J]. 质谱学报,2014,35(1):52-58.
    SUN Yu’an, KE Wei, LI Zhenxing, YANG Rancun, WANG Guoqing. Rapid screening of sulfonamides drugs in animal feed using DART Orbitrap high resolution mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2014, 35(1): 52-58(in Chinese).
    [40]
    COOKS R G, ZHENG O, TAKATS Z, WISEMAN J M. Ambient mass spectrometry[J]. Science, 2006, 311(5 767): 1566-1570.
    [41]
    EVANS-NGUYEN M L, HARGRAVES T L, QUINTO A. Immunoaffinity nanogold coupled with direct analysis in real time (DART) mass spectrometry for analytical toxicology[J]. Analytical Methods, 2017(9): 4954-4957.
    [42]
    VASILJEVIC T, GÓMEZ-RÍOS G, LI F, LIANG P, PAWLISZYN J. High-throughput quantification of drugs of abuse in biofluids via 96-solid-phase microextraction-transmission mode and direct analysis in real time mass spectrometry[J]. Rapid Commun Mass Spectrom, 2019, 33(18): 1423-1433.
    [43]
    PETUCCI C, DIFFENDAL J, KAUFMAN D, MEKONNEN B, TEREFENKO G, MUSSELMAN B. Direct analysis in real time for reaction monitoring in drug discovery[J]. Analytical Chemistry, 2007, 79(13): 5064-5070.
    [44]
    RAY A, BRISTOW T, WHITMORE C, MOSELY J. Online reaction monitoring by mass spectrometry, modern approaches for the analysis of chemical reactions[J]. Mass Spectrometry Reviews, 2018, 37(4): 565-579.
    [45]
    ASHTON G P, HARDING L P, MIDGLEY G, PARKES G M B. Hot-stage microscopy-direct analysis in real-time mass spectrometry (HDM) as a novel tool for monitoring thermally-driven reactions on a small scale[J]. Analytica Chimica Acta, 2020,1 128: 129-139.
    [46]
    CHERNETSOVA E, MORLOCK G. Aspects of surface scanning by direct analysis in real time mass spectrometry employing plasma glow visu-alization[J]. Rapid Communications in Mass Spectrometry, 2015, 29(13): 1242-1252.
    [47]
    CHANG C, ZHOU Z, YANG Y, HAN Y, BAI Y, ZHAO M, LIU H. Normal phase LC coupled with direct analysis in real time MS for the chiral analysis of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and jasmonic acid[J]. Electrophoresis, 2012, 33(22): 3387-3393.
    [48]
    CHANG C, XU G, BAI Y, ZHANG C, LI X, LI M, LIU Y, LIU H. Online coupling of capillary electrophoresis with direct analysis in real time mass spectrometry[J]. Analytical Chemistry, 2013, 85(1): 170-176.
    [49]
    ZENG S, WANG L, CHEN T, QU H. On-line coupling of macroporous resin column chromatography with direct analysis in real time mass spectrometry utilizing a surface flowing mode sample holder[J]. Analytica Chimica Acta, 2014, 811: 43-50.
    [50]
    HSIEH H Y, LI L H, HSU R Y, KAO W F, HSU C C. Quantification of endogenous cholesterol in human serum on paper using direct analysis in real time mass spectrometry[J]. Analytical Chemistry, 2017, 89(11): 6146-6152.
    [51]
    FRANKE A A, BIGGS L, YEW J Y, LAI J F. Areca alkaloids measured from buccal cells using DART-MS serve as accurate biomarkers for areca nut chewing[J]. Drug Test Anal, 2019,11(6): 906-911.
    [52]
    WANG L, ZENG S, TENG C, QU H. Direct analysis in real time mass spectrometry, a process analytical technology tool for real-time process monitoring in botanical drug manufacturing[J]. Journal of Pharmaceutical & Biomedical Analysis, 2014, 91(1): 202-209.
    [53]
    ZENG S, CHEN T, WANG L, QU H. Monitoring batch-to-batch reproducibility using direct analysis in real time mass spectrometry and multivariate analysis: a case study on precipitation[J]. Journal of Pharmaceutical & Biomedical Analysis, 2013, 76: 87-95.
    [54]
    ZHOU Z, ZHANG J, ZHANG W, BAI Y, LIU H. Rapid screening for synthetic antidiabetic drug adulteration in herbal dietary supplements using direct analysis in real time mass spectrometry[J]. Analyst, 2011, 136(12): 2613-2618.
    [55]
    KIM H J, OH M S, HONG J, JANG Y P. Quantitative analysis of major dibenzocyclooctane lignans in Schisandrae fructus by online TLC-DART-MS[J]. Phytochem Anal, 2011, 22(3): 258-262.
    [56]
    SANG M L, KIM H J, JANG Y P. Chemometric classification of morphologically similar umbelliferae medicinal herbs by DART-TOF-MS fingerprint[J]. Phytochemical Analysis, 2012, 23(5): 508-512.
    [57]
    ANTAL B, KUKI Á, NAGY L, NAGY T, ZSUGA M, M-HAMVAS M, VASAS G, KÉKI S. Rapid discrimination of closely related seed herbs (cumin, caraway, and fennel) by direct analysis in real time mass spectrometry (DART-MS)[J]. Analytical Sciences, 2016, 32(10): 1111-1116.
    [58]
    BAJPAI V, SINGH A, ARYA K R, SRIVASTAVA M, KUMAR B. Rapid screening for the adulterants of Berberis aristata using direct analysis in real-time mass spectrometry and principal component analysis for discrimination[J]. Food Additives & Contaminants, 2015, 32(6): 799-807.
    [59]
    BANERJEE S, MADHUSUDANAN K P, CHATTOPADHYAY S K, RAHMAN L U, KHANUJA S P S. Expression of tropane alkaloids in the hairy root culture of Atropa acuminata substantiated by DART mass spectrometric technique[J]. Biomedical Chromatography, 2010, 22(8): 830-834.
    [60]
    CHEN Z, YANG Y, TAO H, LIAO L, LI Y, ZHANG Z. Direct analysis in real-time mass spectrometry for rapid identification of traditional Chinese medicines with coumarins as primary characteristics[J]. Phytochemical Analysis, 2017, 28(3): 137-143.
    [61]
    CHERNETSOVA E S, CRAWFORD E A, SHIKOV A N, POZHARITSKAYA O N, MAKAROV V G, MORLOCK G E. ID-CUBE direct analysis in real time high-resolution mass spectrometry and its capabilities in the identification of phenolic components from the green leaves of Bergenia crassifolia L[J]. Rapid Commun Mass Spectrom, 2012, 26(11): 1329-1337.
    [62]
    KIM H J, JANG Y P. Direct analysis of curcumin in turmeric by DART-MS[J]. Phytochemical Analysis Pca, 2010, 20(5): 372-377.
    [63]
    KIM H J, WAN S B, JANG Y P. Identification of ambiguous cubeb fruit by DART-MS-based fingerprinting combined with principal component analysis[J]. Food Chemistry, 2011, 129(3): 1305-1310.
    [64]
    KUMAR S, BAJPAI V, SINGH A, BINDU S, SRIVASTAVA M, RAMESHKUMAR K B, KUMAR B. Rapid fingerprinting of Rauwolfia species using direct analysis in real time mass spectrometry combined with principal component analysis for their discrimination[J]. Analytical Methods, 2015, 7(14): 6021-6026.
    [65]
    BAJPAI V, SHARMA D, KUMAR B, BAJPAI V, SHARMA D, KUMAR B. Profiling of Piper betle Linn. cultivars by direct analysis in real time mass spectrometric technique[J]. Biomedical Chromatography, 2010, 24(12): 1283-1286.
    [66]
    WANG Y, LI C, HUANG L, LIU L, GUO Y, MA L, LIU S. Rapid identification of traditional Chinese herbal medicine by direct analysis in real time (DART) mass spectrometry[J]. Analytica Chimica Acta, 2014, 845: 70-76.
    [67]
    李先强,闫志,张玲,李宝国,马艳妮. 原位电离实时直接分析串联质谱法鉴别中药泽泻化学成分[J]. 化学分析计量,2021,30(3):14-17.
    LI Xianqiang, YAN Zhi, ZHANG Ling, LI Baoguo, MA Yanni. Identification of chemical constituents of Alisma Orientailsin in real time by tandem mass spectroscopy[J]. Chemical Analysis and Meterage, 2021, 30(3): 14-17(in Chinese).
    [68]
    HUANG Z, XU Y, HUANG Y, LIU C, WANG L. Rapid determination of ginkgolic acids in Ginkgo biloba kernels and leaves by direct analysis in real time mass spectrometry[J]. Journal of Separation Science, 2017, 40(24): 4857-4864.
    [69]
    WANG L, ZENG S, QU H. Effects of ion source operating parameters on direct analysis in real time of 18 active components from traditional Chinese medicine[J]. Journal of Pharmaceutical & Biomedical Analysis, 2016, 121: 30-38.
    [70]
    FUKUDA E, UESAWA Y, BABA M, SUZUKI R, FUKUDA T, SHIRATAKI Y, OKADA Y. Identification of the country of growth of Sophora flavescens using direct analysis in real time mass spectrometry (DART-MS)[J]. Natural Product Communications, 2014, 9(11): 1591-1594.
    [71]
    LESIAK A D, CODY R B, DANE A J, MUSAH R A. Plant seed species identification from chemical fingerprints: a high-throughput application of direct analysis in real time mass spectrometry[J]. Anal Chem, 2015, 87(17): 8748-8757.
    [72]
    ZHU H, WANG C, QI Y, SONG F, LIU Z, LIU S. Rapid quality assessment of Radix Aconiti Preparata using direct analysis in real time mass spectrometry[J]. Analytica Chimica Acta, 2012, 752: 69-77.
    [73]
    CHEN Y, LI L, XIONG F, XIE Y, YANG L. Rapid identification and determination of pyrrolizidine alkaloids in herbal and food samples via direct analysis in real-time mass spectrometry[J]. Food Chemistry, 2020, 334: 127 472.
    [74]
    蒋青,李红丽. 实时直接分析质谱分析中草药多糖[J]. 分析测试学报,2021,40(2):288-294.
    JIANG Qing, LI Hongli. Analysis of herbal polysaccharides by direct analysis in real time-mass spectrometry[J]. Journal of Instrumental Analysis, 2021, 40(2): 288-294(in Chinese).
    [75]
    WANG Y, LIU L, MA L, LIU S. Identification of saccharides by using direct analysis in real time (DART) mass spectrometry[J]. International Journal of Mass Spectrometry, 2014, 357: 51-57.
    [76]
    LIU W L, HE Y F, LI L L, LIU S Y. Fast quantitative analysis of ginsenosides in Asian ginseng (Panax ginseng C. A. Mayer) by using solid-phase methylation coupled to direct analysis in real time[J]. Rapid Commun Mass Spectrom, 2016, 30: 111-115.
    [77]
    XU B, ZHANG D Y, LIU Z Y, YING Z, WU G H. Rapid determination of 1-deoxynojirimycin in Morus alba L. leaves by direct analysis in real time (DART) mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis, 2015, 114: 447-454.
    [78]
    WANG X, JIANG Q, LI H, CHEN D. Rapid fingerprint analysis for herbal polysaccharides using direct analysis in real time ionization mass spectrometry[J]. Rapid Commun Mass Spectrom, 2021, 35(16): e9139.
    [79]
    ZENG S, LU W, TENG C, WANG Y, MO H, QU H. Direct analysis in real time mass spectrometry and multivariate data analysis: a novel approach to rapid identification of analytical markers for quality control of traditional Chinese medicine preparation[J]. Analytica Chimica Acta, 2012, 733: 38-47.
    [80]
    GAO W, QI L W, LIU C C, WANG R, LI P, YANG H. An improved method for the determination of 5-hydroxymethylfurfural in Shenfu injection by direct analysis in real time-quadrupole time-of-flight mass spectrometry[J]. Drug Testing & Analysis, 2016, 8(7): 738-743.
    [81]
    LI Y J, WANG Z Z, BI Y A, DING G, SHENG L S, MUSSELMAN B, ZHANG C F, CHEN J, XIAO W. Direct analysis in real time ionization/quadrupole time-of-flight tandem mass spectrometry for rapid identification of iridoid glycosides and caffeoylquinic acids in Re Du Ning injections[J]. Analytical Methods, 2013, 5(24): 7081-7089.
    [82]
    LI Y J, WANG Z Z, BI Y A, DING G, SHENG L S, QIN J P, XIAO W, LI J C, WANG Y X, WANG X. The evaluation and implementation of direct analysis in real time quadrupole time-of-flight tandem mass spectrometry for characterization and quantification of geniposide in Re du Ning injections[J]. Rapid Communications in Mass Spectrometry, 2012, 26(11): 1377-1384.
    [83]
    MORLOCK G, UEDA Y. New coupling of planar chromatography with direct analysis in real time mass spectrometry[J]. Journal of Chromatography A, 2007, 1 143(1/2): 243-251.
    [84]
    KIM H J, JEE E H, AHN K S, CHOI H S, JANG Y P. Identification of marker compounds in herbal drugs on TLC with DARTMS[J]. Archives of Pharmacal Research, 2010, 33(9): 1355-1359.
    [85]
    ZHANG J, ZHOU Z, YANG J, ZHANG W, BAI Y, LIU H. Thin layer chromatography/plasma assisted multiwavelength laser desorption ionization mass spectrometry for facile separation and selective identification of low molecular weight compounds[J]. Analytical Chemistry, 2012, 84(3): 1496-1503.
    [86]
    ZHANG J, LI Z, ZHANG C, FENG B, ZHOU Z, BAI Y, LIU H. Graphite-coated paper as substrate for high sensitivity analysis in ambient surfaceassisted laser desorption/ionization mass spectrometry[J]. Analytical Chemistry, 2012, 84(7): 3296-3301.
    [87]
    CHEN Y, LI L, XU R, LI F, GU L, LIU H, WANG Z, YANG L. Characterization of natural herbal Medicines by thin-layer chromatography combined with laser ablation-assisted direct analysis in real-time mass spectrometry[J]. Journal of Chromatography A, 2021, 1 654: 462 461.
    [88]
    HÄBE T, MORLOCK G E. Improved desorption/ionization and ion transmission in surface scanning by direct analysis in real time mass spectrometry[J]. Rapid Commun Mass Spectrom, 2016, 30(2): 321-332.
    [89]
    HBE T T, MORLOCK G E. Quantitative surface scanning by direct analysis in real time mass spectrometry[J]. Rapid Commun Mass Spectrom, 2015, 29(6): 474-484.
    [90]
    MÓRICZ Á, HÄBE T, OTT P G, MORLOCK G E. Comparison of high-performance thin-layer with overpressured layer chromatography combined with direct bioautography and direct analysis in real time mass spectrometry for tansy root[J]. Journal of Chromatography A, 2019, 1 603: 355-360.
    [91]
    HBE T T, MARYAM J A, JENNIFER M, MORLOCK G E. Direct bioautography hyphenated to direct analysis in real time mass spectrometry: chromatographic separation, bioassay and mass spectra, all in the same sample run[J]. Journal of Chromatography A, 2018, 1 568: 188-196.
    [92]
    YUN N, KIM H J, PARK S C, PARK G, KIM M K, CHOI Y H, JANG Y P. Localization of major ephedra alkaloids in whole aerial parts of ephedrae herba using direct analysis in real time-time of flight-mass spectrometry[J]. Molecules, 2021, 26(3): 580-587.
    [93]
    FOWBLE K L, TERAMOTO K, CODY R B, EDWARDS D, GUARRERA D, MUSAH R A. Development of “laser ablation direct analysis in real time imaging” mass spectrometry: application to spatial distribution mapping of metabolites along the biosynthetic cascade leading to synthesis of atropine and scopolamine in plant tissue[J]. Analytical Chemistry, 2017, 89(6): 3421-3429.
    [94]
    KHALED A, BELINATO J R, PAWLISZYN J. Rapid and high-throughput screening of multi-residue pharmaceutical drugs in bovine tissue using solid phase microextraction and direct analysis in real timetandem mass spectrometry (SPME-DART-MS/MS)[J]. Talanta, 2020, 217: 121 095.
    [95]
    LAPOINTE J, MUSSELMAN B, O′NEILL T, SHEPARD J R E. Detection of “bath salt” synthetic cathinones and metabolites in urine via DART-MS and solid phase microextraction[J]. Journal of the American Society for Mass Spectrometry, 2015, 26(1): 159-165.
    [96]
    JING W, ZHOU Y, WANG J, MIAO W, DA A. Dispersive magnetic solid-phase extraction coupled to direct analysis in real time mass spectrometry for high-throughput analysis of trace environmental contaminants[J]. Analytical Chemistry, 2019, 91(17): 11240-11246.
  • Cited by

    Periodical cited type(4)

    1. 张丹,郑秀琴,斯子豪,王南,杨喜月,谷丽华,王峥涛,李林楠,杨莉. 原位电离-便携质谱法对中药车前子掺伪葶苈子的现场快速筛查. 分析测试学报. 2025(02): 221-228 .
    2. 周松华,安可珍,杜立君,丁强,任燕楠. 气相色谱-质谱联用仪计量检测优化研究. 粘接. 2025(02): 121-124 .
    3. 白向菊,王镜勋,石钺. 植物成分的提取及检测技术研究进展. 中国化妆品. 2024(02): 74-79 .
    4. 罗霄,肖思远,张良,俞佳,梁恒兴,李及,代琪,李锐,肖洪涛. DART-MS法快速检测姜黄属中药中姜黄素类化合物的适用性研究. 中草药. 2024(15): 5256-5263 .

    Other cited types(0)

Catalog

    Article views (577) PDF downloads (466) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return