Citation: | DU Meng-ying, JIAO Lu-yang, XU Yi-cheng, LI Shu-qi, CUI Yong-liang, ZHANG Sen, KONG Xiang-lei. Comparison of Collisional Fragmentation Pathways of Sodiated and Protonated Cyclic Peptide Analogs[J]. Journal of Chinese Mass Spectrometry Society, 2023, 44(5): 643-657. DOI: 10.7538/zpxb.2023.0032 |
[1] |
CRAIK D J. Seamless proteins tie up their loose ends[J]. Science, 2006, 311: 1563-1564.
|
[2] |
de VEER S J, KAN W W, CRAIK D J. Cyclotides: from structure to function[J]. Chemical Reviews, 2019, 119(24): 12375-12421.
|
[3] |
CARDOTE T A F, CIULLI A. Cyclic and macrocyclic peptides as chemical tools to recognise protein surfaces and probe protein-protein interactions[J]. Chem Med Chem, 2016, 11: 787-794.
|
[4] |
KRISHNAMURTHY T, SZAFRANIEC L, HUNT D F, SHABANOWITZ J, YATES J R, HAUER C R, CARMICHAEL W W, SKULBERG O, CODD G A, MISSLER S. Structural characterization of toxic cyclic peptides from bluegreen algae by tandem mass spectrometry[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(3): 770-774.
|
[5] |
ISHIKAWA K, NIWA Y, OISHI K, AOI S, TAKEUCHI T, WAKAYAMA S. Sequence determination of unknown cyclic peptide antibiotics by fast atom bombardment mass spectrometry[J]. Biological Mass Spectrometry, 1990, 19(7): 395-399.
|
[6] |
LIN T, GLISH G L. C-Terminal peptide sequencing via multistage mass spectrometry[J]. Analytical Chemistry, 1998, 70(24): 5162-5165.
|
[7] |
NEWTON K A, MCLUCKEY S A. Generation and manipulation of sodium cationized peptides in the gas phase[J]. Journal of the American Society for Mass Spectrometry, 2004, 15(4): 607-615.
|
[8] |
LIN T, PAYNE A H, GLISH G L. Dissociation pathways of alkali-cationized peptides: opportunities for C-terminal peptide sequencing[J]. Journal of the American Society for Mass Spectrometry, 2001, 12(5): 497-504.
|
[9] |
JEGOROV A, HAJDUCH M, SULC M, HAVLICEK V. Nonribosomal cyclic peptides: specific markers of fungal infections[J]. Journal of Mass Spectrometry, 2006, 41(5): 563-576.
|
[10] |
GUAN F, UBOH C E, SOMA L R, RUDY J. Sequence elucidation of an unknown cyclic peptide of high doping potential by ETD and CID tandem mass spectrometry[J]. Journal of the American Society for Mass Spectrometry, 2011, 22: 718-730.
|
[11] |
NGOKA L C M, GROSS M L. A nomenclature system for labeling cyclic peptide fragments[J]. Journal of the American Society for Mass Spectrometry, 1999, 10(4): 360-363.
|
[12] |
FU Y, XIA Y Q, FLARAKOS J, TSE F L S, MILLER J D, JONES E B, LI W. Differential mobility spectrometry coupled with multiple ion monitoring in regulated LC-MS/MS bioanalysis of a therapeutic cyclic peptide in human plasma[J]. Analytical Chemistry, 2016, 88(7): 3655-3661.
|
[13] |
ECKART K. Mass spectrometry of cyclic peptides[J]. Mass Spectrometry Reviews, 1994, 13(1): 23-55.
|
[14] |
KUZMA M, JEGOROV A, HESSO A, TOR-NAEUS J, SEDMERA P, HAVLÍCˇEK V. Role of amino acid N-methylation in cyclosporins on ring opening and fragmentation mechanisms during collisionally induced dissociation in an ion trap[J]. Journal of Mass Spectrometry, 2002, 37(3): 292-298.
|
[15] |
GOVAERTS C, ROZENSKI J, ORWA J, ROETS E, SCHEPDAEL A V, HOOGMARTENS J. Mass spectrometric fragmentation of cyclic peptides belonging to the polymyxin and colistin antibiotics studied by ion trap and quadrupole/orthogonal-acceleration time-of-flight technology[J]. Rapid Communications in Mass Spectrometry, 2002, 16(9): 823-833.
|
[16] |
NGOKA L C M, GROSS M L. Multistep collisionally activated decomposition in an ion trap for the determination of the amino-acid sequence and gas-phase ion chemistry of lithium-coordinated valinomycin[J]. International Journal of Mass Spectrometry, 2000, 194: 247-259.
|
[17] |
TILVI S, NAIK C G. Tandem mass spectrometry of kahalalides: identification of two new cyclic depsipeptides, kahalalide R and S from Elysia grandifolia[J]. Journal of Mass Spectrometry, 2007, 42(1): 70-80.
|
[18] |
MAYUMI T, KATO H, KAWASAKI Y, HARADA K. Formation of diagnostic product ions from cyanobacterial cyclic peptides by the twobond fission mechanism using ion trap liquid chromatography/multi-stage mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2007, 21(6): 1025-1033.
|
[19] |
BÓKA B, MANCZINGER L, KECSKEMÉTI A, CHANDRASEKARAN M, KADAIKUNNAN S, ALHARBI N S, VÁGVÖLGYI C, SZEKERES A. Ion trap mass spectrometry of surfactins produced by Bacillus subtilis SZMC 6179J reveals novel fragmentation features of cyclic lipopeptides[J]. Rapid Communications in Mass Spectrometry, 2016, 30(13): 1581-1590.
|
[20] |
MOHIMANI H, YANG Y L, LIU W T, HSIEH P W, DORRESTEIN P C, PEVZNER P A. Sequencing cyclic peptides by multistage mass spectrometry[J]. Proteomics, 2011, 11(18): 3642-3650.
|
[21] |
STEFANOWICZ P. Electrospray mass spectrometry and tandem mass spectrometry of the natural mixture of cyclic peptides from linseed[J]. European Journal of Mass Spectrometry, 2004, 10: 665-671.
|
[22] |
STEFANOWICZ P. Detection and sequencing of new cyclic peptides from linseed by electrospray ionization mass spectrometry[J]. Acta Biochimica Polonica, 2001, 48(4): 1125-1129.
|
[23] |
KAWAI T, MIHARA Y, MORITA M, OHKUBO M, ASAMI T, WATANABE T M. Quantitation of cell membrane permeability of cyclic peptides by single-cell cytoplasm mass spectrometry[J]. Analytical Chemistry, 2021, 93(7): 3370-3377.
|
[24] |
ZHENG B, LIU Y, LI H, YE Y, GAO X, YUAN G. Discrimination of cyclic peptide diastereomers by electrospray ionization tandem mass spectrometry[J]. Journal of Mass Spectrometry, 2009, 44(10): 1478-1481.
|
[25] |
THIBAULT P, FAUBERT D, KARUNANITHY S, BOYD R K, HOLMES C F. Isolation, mass spectrometric characterization, and protein phosphatase inhibition properties of cyclic peptide analogues of gramicidin-S from bacillus brevis (Nagano strain)[J]. Journal of Mass Spectrometry, 1992, 21(8): 367-379.
|
[26] |
NGOKA L C M, GROSS M L. Multistep tandem mass spectrometry for sequencing cyclic peptides in an ion-trap mass spectrometer[J]. Journal of the American Society for Mass Spectrometry, 1999, 10(8): 732-746.
|
[27] |
JEGOROV A, HAVLÍCˇEK V. Spontaneous N→O acyl shift in the [M + H]+ ions of [MeBmt1] cyclosporins in an ion trap[J]. Journal of Mass Spectrometry, 2001, 36(6): 633-640.
|
[28] |
LIN S, LIEHR S, COOPERMAN B S, COTTER R J. Sequencing cyclic peptide inhibitors of mammalian ribonucleotide reductase by electrospray ionization mass spectrometry[J]. Journal of Mass Spectrometry, 2001, 36(6): 658-663.
|
[29] |
GRIECO P, GITU P M, HRUBY V J. Preparation of ‘side-chain-to-side-chain’ cyclic peptides by allyl and alloc strategy: potential for library synthesis[J]. Journal of Peptide Research, 2001, 57(3): 250-256.
|
[30] |
ISHIDA H, QI Z, SOKABE M, DONOWAKI K, INOUE Y. Molecular design and synthesis of artificial ion channels based on cyclic peptides containing unnatural amino acids[J]. The Journal of Organic Chemistry, 2001, 66(9): 2978-2989.
|
[31] |
CHOW H Y, ZHANG Y, MATHESON E, LI X. Ligation technologies for the synthesis of cyclic peptides[J]. Chemical Reviews, 2019, 119(17): 9971-10001.
|
[32] |
REGUERA L, RIVERA D G. Multicomponent reaction toolbox for peptide macrocyclization and stapling[J]. Chemical Reviews, 2019, 119(17): 9836-9860.
|
[33] |
JING X, JIN K. A gold mine for drug discovery: strategies to develop cyclic peptides into therapies[J]. Medicinal Research Reviews, 2020, 40(2): 753-810.
|
[34] |
ZHANG X, LU G, SUN M, MAHANKALI M, MA Y, ZHANG M, HUA W, HU Y, WANG Q, CHEN J, HE G, QI X, SHEN W, LIU P, CHEN G. A general strategy for synthesis of cyclophane-braced peptide macrocycles via palladium-catalysed intramolecular sp3 C—H arylation[J]. Nature Chemistry, 2018, 10: 540-548.
|
[35] |
LI B, LI X, HAN B, CHEN Z, ZHANG X, HE G, CHEN G. Construction of natural-product-like cyclophane-braced peptide macrocycles via sp3C—H arylation[J]. Journal of the American Chemical Society, 2019, 141(23): 9401-9407.
|
[36] |
DUAN X, LUO G, CHEN Y, KONG X. Effects of alkali metal ion cationization on fragmentation pathways of triazole-epothilone[J]. Journal of the American Society for Mass Spectrometry, 2012, 23: 1126-1134.
|
[37] |
NGOKA L C M, GROSS M L, TOOGOOD P L. Sodium-directed selective cleavage of lactones: a method for structure determination of cyclodepsipeptides[J]. Int J Mass Spectrom, 1999(182/183): 289-298.
|
[38] |
WILLIAMS S M, BRODBELT J S. MSn characterization of protonated cyclic peptides and metal complexes[J]. Journal of the American Society for Mass Spectrometry, 2004, 15(7): 1039-1054.
|
[39] |
YUAN M, NAMIKOSHI M, OTSUKI A, WATANABE M F, RINEHART K L. Electrospray ionization mass spectrometric analysis of microcystins, cyclic heptapeptide hepatotoxins: modulation of charge states and [M+H]+ to [M+Na]+ ratio[J]. Journal of the American Society for Mass Spectrometry, 1999, 10(11): 1138-1151.
|
[40] |
LOPES N P, STARK C B W, STAUNTON J, GATES P J. Evidence for gas-phase redox chemistry inducing novel fragmentation in a complex natural product[J]. Organic & Biomolecular Chemistry, 2004, 2: 358-363.
|
[41] |
LOPES N P, GATES P J, WILKINS J P G, STAUNTON J. Fragmentation studies on lasalocid acid by accurate mass electrospray mass spectrometry[J]. Analyst, 2002, 127: 1224-1227.
|
[42] |
KONG X L, LIN C, INFUSINI G, OH H B, JIANG H, BREUKER K, WU C C, CHARKIN O P, CHANG H C, MCLAFFERTY F W. Numerous isomers of serine octamer ions characterized by infrared photodissociation spectroscopy[J]. Chem Phys Chem, 2009, 10: 2603-2606.
|
[43] |
LORENZ U J, RIZZO T R. Multiple isomers and protonation sites of the phenylalanine/serin-edimer[J]. Journal of the American Chemical Society, 2012, 134(27): 11053-11055.
|
[44] |
CHEVROT G, FILETI E E, CHABAN V V. Enhanced stability of the model mini-protein in aminoacid ionic liquids and their aqueous solutions[J]. Journal of Computational Chemistry, 2015, 36(27): 2044-2051.
|
[45] |
JI L F, LI A Y, LI Z Z, GE Z X. Substituent effects on the properties of the hemi-bonded complexes (XH2P…NH2Y)+ (X, Y=H, F, Cl, Br, NH2, CH3, OH)[J]. Journal of Molecular Modeling, 2016, 22: 1-9.
|
[46] |
FENG R X, MU L, YANG S, KONG X L. IRMPD spectroscopy of metal cationized ions generated by MALDI source with graphene as the matrix[J]. International Journal of Mass Spectrometry, 2017, 419: 37-43.
|
[47] |
FENG R X, XU Y C, KONG X L. Structural diversity of di-metalized arginine evidenced by infrared multiple photon dissociation (IRMPD) spectroscopy in the gas phase[J]. Molecules, 2021, 26(21): 6546.
|
[48] |
CODY R B, HEIN R E, GOODMAN S D, MARSHALL A G. Stored waveform inverse Fourier transform excitation for obtaining increased parent ion selectivity in collisionally activated dissociation: preliminary results[J]. Rapid Communications in Mass Spectrometry, 1987, 1(6): 99-102.
|
[49] |
GAUTHIER J W, TRAUTMAN T R, JACOBSON D B. Sustained off-resonance irradiation for collision-activated dissociation involving Fourier-transform mass-spectrometry-collision-activated dissociation technique that emulates infrared multiphoton dissociation[J]. Analytica Chimica Acta, 1991, 246(1): 211-225.
|
[50] |
FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E, ROBB M A, CHEESEMAN J R, SCALMANI G, BARONE V, MENNUCCI B, PETERSSON G A. Gaussian 09, Revision C.01[CP]. Gaussian, Inc.: Wallingford, CT, USA, 2010.
|
[1] | QUAN Qing-hua, ZHANG Jia-mei, GUO Xiao-yu, SUN Qian-qian, TIAN Jing-yun, SONG Xing-zhuo, JIANG Kun-xiu, LIU Yong-gang, GAO Zeng-ping. Fragmentation Pathways and Patterns of N-Alkylamides Derivatives[J]. Journal of Chinese Mass Spectrometry Society, 2020, 41(5): 402-410. DOI: 10.7538/zpxb.2019.0059 |
[2] | YIN Chun-yuan, ZHANG Cong, SUN Ming-qian, LIN Li, LIU Jian-xun. Mass Spectrometric Fragmentation Pathways of Three Ginkgo Biloba Flavonoids Using HPLC-Q-TOF MS[J]. Journal of Chinese Mass Spectrometry Society, 2020, 41(1): 57-65. DOI: 10.7538/zpxb.2019.0011 |
[3] | QIAN Zhen-hua, LIU Cui-mei, HUA Zhen-dong, GAO Li-sheng. Fragmentation Pathway of Synthetic Cannabinoids with an Indole/Indazole-3-Carboxamide Structure Bearing a 1-Carbamoylpropyl Group Using UPLC-Q-TOF MS[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(3): 323-330. DOI: 10.7538/zpxb.2017.0103 |
[4] | GAO Jian, ZHANG Ya-li, MIAO Xiang-zhen, ZHANG Xiao, YUAN Jiang, WANG Jia-li, ZHENG Chun-mei, LIU Yong-gang, TAN Peng. Identification of Alkaloids in Seeds of Peganumharmala Linn. and Analysis of Their Fragmentation Pathways by LTQ-Orbitrap MS[J]. Journal of Chinese Mass Spectrometry Society, 2017, 38(1): 89-96. DOI: 10.7538/zpxb.2017.38.01.0089 |
[5] | DONG Jie, JI Jiao-jiao, WANG Jia-li, YUAN Jiang, GAO Jian, ZHANG Ya-li, JI Rui-fang, QUAN Qing-hua, TAN Peng, LIU Yong-gang. Fragmentation Pathways and Patterns of N-Alkylamides by ESI-MSn[J]. Journal of Chinese Mass Spectrometry Society, 2017, 38(1): 83-88. DOI: 10.7538/zpxb.2017.38.01.0083 |
[6] | ZHANG Chen-ze, YAN Meng-meng, XU Bing, LIN Hong-ying, YAN Wen-qiang, LIU Shuai, CHEN Jing, LIU Yong-gang, WANG Peng-long, LEI Hai-min. Mass Fragmentation Pathway of a Candidate Drug T-VA and Its Metabolites in Rats[J]. Journal of Chinese Mass Spectrometry Society, 2017, 38(1): 67-74. DOI: 10.7538/zpxb.2017.38.01.0067 |
[7] | ZHAN Xue-yan, ZHANG Yan-ling, ZHANG Jia-yu, TAN Peng, JI Jiao-jiao, DONG Jie, LIU Yong-gang. Fragmentation Pathways and Patterns of Asiaticoside and Madecassoside in ESI-MSn[J]. Journal of Chinese Mass Spectrometry Society, 2015, 36(4): 289-295. DOI: 10.7538/zpxb.youxian.2015.0015 |
[8] | LIANG Xian-rui, GUO Zi-li, YU Chuan-ming. Fragmentation Pathways of N-substituted Phthalimide Derivatives Using Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2013, 34(3): 151-156. DOI: 10.7538/zpxb.2013.34.03.0151 |
[9] | YU Lin-fang, XU Jie, CHEN Shi-guo, XUE Yong, WANG Jing-feng, LI Zhao-jie, XUE Chang-hu. Study on the Fragmentation Pathways of Triterpene Glycosides from Apostichopus japonicus Selenka by Negative Electrospray Ionization Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2011, 32(2): 77-81. |
[10] | LI Fu, DING Li-sheng, WANG Ming-kui. Study on the Fragmentation Pathway of Raddeanin A by ESI-MS/MS[J]. Journal of Chinese Mass Spectrometry Society, 2008, 29(2): 76-79. |
1. |
王炎钦,赵瑜. 中国内地和香港地区新型冠状病毒刺突蛋白的基因序列特征及进化分析. 基层医学论坛. 2023(20): 16-19+62 .
![]() | |
2. |
吴城昱,于戈,高雅娟. “后疫情时代”寒地养老设施冬季居室PM_(2.5)研究. 当代建筑. 2023(S1): 70-73 .
![]() |