WU Chen-xin, HUA Lei, CHEN Ping, JIANG Ji-chun, LI Jin-xu, LI Hai-yang. Application of Vacuum Ultraviolet Lamp-based Photoionization Mass Spectrometry in the Monitoring of Catalytic Reaction Processes[J]. Journal of Chinese Mass Spectrometry Society, 2024, 45(1): 44-56. DOI: 10.7538/zpxb.2023.0103
Citation: WU Chen-xin, HUA Lei, CHEN Ping, JIANG Ji-chun, LI Jin-xu, LI Hai-yang. Application of Vacuum Ultraviolet Lamp-based Photoionization Mass Spectrometry in the Monitoring of Catalytic Reaction Processes[J]. Journal of Chinese Mass Spectrometry Society, 2024, 45(1): 44-56. DOI: 10.7538/zpxb.2023.0103

Application of Vacuum Ultraviolet Lamp-based Photoionization Mass Spectrometry in the Monitoring of Catalytic Reaction Processes

More Information
  • Received Date: August 30, 2023
  • Revised Date: October 30, 2023
  • Available Online: January 22, 2024
  • The study of catalytic reaction mechanism is a critical and extremely challenging project. Online monitoring of reactants, intermediates and products during catalytic reactions can provide key evidence for the in-depth study of complex catalytic reaction networks, reaction pathways and reaction kinetics. As an online mass spectrometry based on soft ionization technique, vacuum ultraviolet photoionization mass spectrometry (VUV-PIMS) has proven itself as a versatile and powerful analytical technique for online and real-time process monitoring, which has gradually become a highly concerned characterization technique for catalytic reaction processes due to its advantages of high molecular ion yield, simple spectrum interpretation and high sensitivity. Compared with other commonly used synchrotron radiation and laser-based VUV light sources, the low pressure discharge lamps filled with various rare gases are compact, easy to operate, and low cost, such as krypton discharge lamps. However, the relatively low photon intensity of these lamps limits their applications. The efforts have been taken to develop stronger VUV light sources or lamp-based efficient combined ion sources to solve this issue. In this paper, the development of VUV-PIMS technology, especially the research progress of photoionization ion sources based on the VUV lamp, were reviewed, such as high-pressure photoionization (HPPI) source, single photon ionization-photoelectron ionization (SPI-PEI) combined ion source, and single photon ionization-chemical ionization (SPI-CI) combined ion source. By combining capillary sampling technology or molecular beam sampling technology, the applications of VUV-PIMS for real-time and online monitoring of stable products and active intermediates in catalytic processes were introduced, such as ammonia synthesis, methane/ethane catalytic conversion, methanol to olefins. The applications in online monitoring of these catalytic reaction processes exhibited an excellent performance and wide potential applications of VUV-PIMS in process monitoring and reaction mechanism research. Finally, the future development trend of VUV-PIMS was prospected for the application requirements of accurate characterization of catalytic reaction process.
  • [1]
    SCHLOGL R. Heterogeneous catalysis[J]. Angew Chem Int Ed Engl, 2015, 54(11):3465-3520.
    [2]
    LIU Y, DENG D, BAO X. Catalysis for selected C1 chemistry[J]. Chem, 2020, 6(10):2497-2514.
    [3]
    DING K, GULEC A, JOHNSON A M, SCHWEITZER N M, STUCKY G D, MARKS L D, STAIR P C. Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts[J]. Science, 2015, 350(6257):189-192.
    [4]
    HESS C. New advances in using Raman spectroscopy for the characterization of catalysts and catalytic reactions[J]. Chem Soc Rev, 2021, 50(5):3519-3564.
    [5]
    LIU Z, HUANG E, OROZCO I, LIAO W, PALOMINO R M, RUI N, DUCHOÑ T, NEMŠÁK S, GRINTER D C, MAHAPATRA M. Water-promoted interfacial pathways in methane oxidation to methanol on a CeO2-Cu2O catalyst[J]. Science, 2020, 368:513.
    [6]
    ZHANG C, LIU X, JIANG M, WEN Y, ZHANG J, QIAN G. A review on identification, quantification, and transformation of active species in SCR by EPR spectroscopy[J]. Environmental Science and Pollution Research, 2023, 30(11):28550-28562.
    [7]
    JAEGERS N R, MUELLER K T, WANG Y, HU J Z. Variable temperature and pressure operando MAS NMR for catalysis science and related materials[J]. Acc Chem Res, 2020, 53:611-619.
    [8]
    MARK T D. Fundamental-aspects of electron-impact ionization[J]. Int J Mass Spectrom Ion Processes, 1982, 45:125-145.
    [9]
    DORFNER R, YERETZIAN T F C, KETTRUP A, ZIMMERMANN R. Laser mass spectrometry as on-line sensor for industrial process analysis:process control of coffee roasting[J]. Anal Chem, 2004, 76(5):1386-1402.
    [10]
    HANLEY L, ZIMMERMANN R. Light and molecular ions:the emergence of vacuum UV single-photon ionization in MS[J]. Anal Chem, 2009, 81(11):4174-4182.
    [11]
    GUNZER F, KRUGER S, GROTEMEYER J. Photoionization and photofragmentation in mass spectrometry with visible and UV lasers[J]. Mass Spectrometry Reviews, 2019, 38(2):202-217.
    [12]
    ZIMMERMANN R. Photo ionisation in mass spectrometry:light, selectivity and molecular ions[J]. Analytical and Bioanalytical Chemistry, 2013, 405(22):6901-6905.
    [13]
    YOU R, HUANG W. Photoionization mass spectrometry for online detection of reactive and unstable gas-phase intermediates in heterogeneous catalytic reactions[J]. ChemCatChem, 2019, 12(3):675-688.
    [14]
    LI Y, QI F. Recent applications of synchrotron VUV photoionization mass spectrometry:insight into combustion chemistry[J]. Accounts of Chemical Research, 2010, 43(1):68-78.
    [15]
    QI F. Combustion chemistry probed by synchrotron VUV photoionization mass spectrometry[J]. Proceedings of the Combustion Institute, 2013, 34(1):33-63.
    [16]
    ZHOU Z, DU X, YANG J, WANG Y, LI C, WEI S, DU L, LI Y, QI F, WANG Q. The vacuum ultraviolet beamline/endstations at NSRL dedicated to combustion research[J]. Journal of Synchrotron Radiation, 2016, 23(4):1035-1045.
    [17]
    周忠岳,杨玖重,潘洋,齐飞. 同步辐射真空紫外光电离质谱在燃烧和催化研究中的应用进展[J]. 质谱学报,2021,42(5):598-608. ZHOU Zhongyue, YANG Jiuzhong, PAN Yang, QI Fei. Recent applications of synchrotron vacuum ultraviolet photoionization mass spectrometry in combustion and catalysis research[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5):598-608(in Chinese).
    [18]
    HEMBERGER P, van BOKHOVEN J A, PÉREZ-RAMÍREZ J, BODI A. New analytical tools for advanced mechanistic studies in catalysis:photoionization and photoelectron photoion coincidence spectroscopy[J]. Catalysis Science & Technology, 2020, 10:1975-1990.
    [19]
    ZHANG Z, PÉREZ-RAMÍREZ J, van BOKHOVEN J A, BODI A, HEMBERGER P. Operando photoelectron photoion coincidence spectroscopy to detect short-lived intermediates in catalysis[J]. Chimia, 2023, 77:132-138.
    [20]
    LUO L, TANG X, WANG W, WANG Y, SUN S, QI F, HUANG W. Methyl radicals in oxidative coupling of methane directly confirmed by synchrotron VUV photoionization mass spectroscopy[J]. Scientific Reports, 2013, 3:1625.
    [21]
    LUO L, YOU R, LIU Y, YANG J, ZHU Y, WEN W, PAN Y, QI F, HUANG W. Gas-phase reaction network of Li/MgO-catalyzed oxidative coupling of methane and oxidative dehydrogenation of ethane[J]. ACS Catal, 2019, 9(3):2514-2520.
    [22]
    YOU R, ZHANG X, LUO L, PAN Y, PAN H, YANG J, WU L, ZHENG X, JIN Y, HUANG W. NbO<i>x/CeO2-rods catalysts for oxidative dehydrogenation of propane:Nb-CeO2 interaction and reaction mechanism[J]. Journal of Catalysis, 2017, 348(1):189-199.
    [23]
    WEN W, YU S, ZHOU C, MA H, ZHOU Z, CAO C, YANG J, XU M, QI F, ZHANG G, PAN Y. Formation and fate of formaldehyde in methanol-to-hydrocarbon reaction:in situ synchrotron radiation photoionization mass spectrometry study[J]. Angew Chem Int Ed Engl, 2020, 59(12):4873-4878.
    [24]
    JIAO F, LI J, PAN X, XIAO J, LI H, MA H, WEI M, PAN Y, ZHOU Z, LI M, MIAO S, LI J, ZHU Y, XIAO D, HE T, YANG J, QI F, FU Q, BAO X. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277):1065-1068.
    [25]
    PAUNOVIĆ V, HEMBERGER P, BODI A, LÓPEZ N, PÉREZ-RAMÍREZ J. Evidence of radical chemistry in catalytic methane oxybromination[J]. Nature Catalysis, 2018, 1:363-370.
    [26]
    CESARINI A, MITCHELL S, ZICHITTELLA G, AGRACHEV M, SCHMID S P, JESCHKE G, PAN Z, BODI A, HEMBERGER P, PEREZ-RAMIREZ J. Elucidation of radical- and oxygenate-driven paths in zeolite-catalysed conversion of methanol and methyl chloride to hydrocarbons[J]. Nature Catalysis, 2022, 5(7):605-614.
    [27]
    MUHLBERGER F, WIESER J, MOROZOV A, ULRICH A, ZIMMERMANN R. Single-photon ionization quadrupole mass spectrometry with an electron beam pumped excimer light source[J]. Anal Chem, 2005, 77(7):2218-2226.
    [28]
    MUHLBERGER F, WIESER T S J, ULRICH A, ZIMMERMANN R. Single photon ionization time-of-flight mass spectrometry with a pulsed electron beam pumped excimer VUV lamp for on-line gas analysis:setup and first results on cigarette smoke and human breath[J]. Anal Chem, 2005, 77(22):7408-7414.
    [29]
    SHU X, YANG B, MENG J, WANG Y, SHU J. Vacuum ultraviolet photoionization mass spectra of typical organics contained in ambient aerosols[J]. Spectroscopy Letters, 2013, 46:227-234.
    [30]
    SUN W, SHU J, ZHANG P, LI Z, LI N, LIANG M, YANG B. Real-time monitoring of trace-level VOCs by an ultrasensitive lamp-based VUV photoionization mass spectrometer[J]. Atmospheric Measurement Techniques, 2015, 8(11):4637-4643.
    [31]
    LI Z, XU C, SHU J, SHU J. Detection of sub-pptv benzene, toluene, and ethylbenzene via low-pressure photoionization mass spectrometry[J]. Analytica Chimica Acta, 2017, 964:134-141.
    [32]
    CHENG S, YAN Z, SHAN L, HUANG J, YU Z, WEI Z, WANG H, LI Z, YANG B, SHU J. Novel MCP-windowed EUV light source and its mass spectrometric application for detecting chlorinated methanes[J]. Anal Chem, 2023, 95(45):16531-16538.
    [33]
    LI Q, HUA L, XIE Y, JIANG J, LI H, HOU K, TIAN D, LI H. Single photon ionization time-of-flight mass spectrometry with a windowless RF-discharge lamp for high temporal resolution monitoring of the initial stage of methanol-to-olefins reaction[J]. Analyst, 2019, 144(4):1104-1109.
    [34]
    WANG Y, JIANG J, HUA L, HOU K, XIE Y, CHEN P, LIU W, LI Q, WANG S, LI H. High-pressure photon ionization source for TOFMS and its application for online breath analysis[J]. Anal Chem, 2016, 88(18):9047-9055.
    [35]
    HUA L, WU Q, HOU K, CUI H, CHEN P, WANG W, LI J, LI H. Single photon ionization and chemical ionization combined ion source based on a vacuum ultraviolet lamp for orthogonal acceleration time-of-flight mass spectrometry[J]. Anal Chem, 2011, 83(13):5309-5316.
    [36]
    XIE Y, CHEN P, HUA L, HOU K, WANG Y, WANG H, LI H. Rapid identification and quantification of linear olefin isomers by online zzonolysis-single photon ionization time-of-flight mass spectrometry[J]. J Am Soc Mass Spectrom, 2016, 27:144-152.
    [37]
    WU Q, HUA L, HOU K, CUI H, CHEN W, CHEN P, WANG W, LI J, LI H. Vacuum ultraviolet lamp based magnetic field enhanced photoelectron ionization and single photon ionization source for online time-of-flight mass spectrometry[J]. Anal Chem, 2011, 83(23):8992-8998.
    [38]
    GUO Y, HU J, LIU X, SUN T, ZHAO S, WANG S. Scalable solvent-free preparation of [Ni3(HCOO)6] frameworks for highly efficient separation of CH4 from N2[J]. Chemical Engineering Journal, 2017, 327:564-572.
    [39]
    XIE Y, HUA L, HOU K, CHEN P, ZHAO W, CHEN W, JU B, LI H. Long-term real-time monitoring catalytic synthesis of ammonia in a microreactor by VUV-lamp-based charge-transfer ionization time-of-flight mass spectrometry[J]. Anal Chem, 2014, 86(15):7681-7687.
    [40]
    CHEN P, HOU K, HUA L, XIE Y, ZHAO W, CHEN W, CHEN C, LI H. Quasi-trapping chemical ionization source based on a commercial VUV lamp for time-of-flight mass spectrometry[J]. Anal Chem, 2014, 86:1332-1336.
    [41]
    WANG Y, HUA L, LI Q, JIANG J, HOU K, WU C, LI H. Direct detection of small n-alkanes at sub-ppbv level by photoelectron-induced O2+ cation chemical ionization mass spectrometry at kPa pressure[J]. Anal Chem, 2018, 90(8):5398-5404.
    [42]
    WAN N, JIANG J, HU F, CHEN P, ZHU K, DENG D, XIE Y, WU C, HUA L, LI H. Nonuniform electric field-enhanced in-source declustering in high-pressure photoionization/photoionization-induced chemical ionization mass spectrometry for operando catalytic reaction monitoring[J]. Anal Chem, 2021, 93(4):2207-2214.
    [43]
    MUHLBERGER F, KAESDORF K H S, FERGE T, ZIMMERMANN R. Comprehensive on-line characterization of complex gas mixtures by quasi-simultaneous resonance-enhanced multiphoton ionization, vacuum-UV single-photon ionization, and electron impact ionization in a time-of-flight mass spectrometer:setup and instrument characterization[J]. Anal Chem, 2004, 76(22):6753-6764.
    [44]
    WU Q, HUA L, HOU K, CUI H, CHEN P, WANG W, LI J, LI H. A combined single photon ionization and photoelectron ionization source for orthogonal acceleration time-of-flight mass spectrometer[J]. International Journal of Mass Spectrometry, 2010, 295(1/2):60-64.
    [45]
    FENG Z, TANG C, ZHANG P, LI K, LI G, WANG J, FENG Z, LI C. Asymmetric sites on the ZnZrO<i>x catalyst for promoting formate formation and transformation in CO2 Hydrogenation[J]. J Am Chem Soc, 2023, 145(23):12663-12672.
    [46]
    LU Y, YANG Y, ZHANG T, GE Z, CHANG H, XIAO P, XIE Y, HUA L, LI Q, LI H, MA B, GUAN N, MA Y, CHEN Y. Photoprompted hot electrons from bulk cross-linked graphene materials and their efficient catalysis for atmospheric ammonia synthesis[J]. ACS Nano, 2016, 10:10507-10515.
    [47]
    WANG Q, PAN J, GUO J, HANSEN H A, XIE H, JIANG L, HUA L, LI H, GUAN Y, WANG P, GAO W, LIU L, CAO H, XIONG Z, VEGGE T, CHEN P. Ternary ruthenium complex hydrides for ammonia synthesis via the associative mechanism[J]. Nature Catalysis, 2021, 4(11):959-967.
    [48]
    CUI X, LI H, WANG Y, HU Y, HUA L, LI H, HAN X, LIU Q, YANG F, HE L, CHEN X, LI Q, XIAO J, DENG D, BAO X. Room-temperature methane conversion by graphene-confined single iron atoms[J]. Chem, 2018, 4:1902-1910.
    [49]
    WANG S, LI H, HE M, CUI X, HUA L, LI H, XIAO J, YU L, RAJAN N P, XIE Z, DENG D. Room-temperature conversion of ethane and the mechanism understanding over single iron atoms confined in graphene[J]. Journal of Energy Chemistry, 2019, 36(9):47-50.
    [50]
    ZHU K, LIANG S, CUI X, HUANG R, WAN N, HUA L, LI H, CHEN H, ZHAO Z, HOU G, LI M, JIANG Q, YU L, DENG D. Highly efficient conversion of methane to formic acid under mild conditions at ZSM-5-confined Fe-sites[J]. Nano Energy, 2021, 82:105718.
    [51]
    FENN J B. Mass spectrometric implications of high-pressure ion sources[J]. International Journal of Mass Spectrometry, 2000, 200:459-478.
    [52]
    HORN R, IHMANN K, IHMANN J, JENTOFT F C, GESKE M, TAHA A, PELZER K, SCHLÖGL R. Molecular beam mass spectrometer equipped with a catalytic wall reactor for in situ studies in high temperature catalysis research[J]. Review of Scientific Instruments, 2006, 77(5):054102.
    [53]
    GESKE M, ELZER K, HORN R, JENTOFT F C, SCHLÖGL R. In-situ investigation of gas phase radical chemistry in the catalytic partial oxidation of methane on P[J]. Catalysis Today, 2009, 142(1/2):61-69.
    [54]
    LI Y, ZHANG X, HE H, YU Y, YUAN T, TIAN Z, WANG J, LI Y. Effect of the pressure on the catalytic oxidation of volatile organic compounds over Ag/Al2O3 catalyst[J]. Applied Catalysis B:Environmental, 2009, 89(3/4):659-664.
    [55]
    GUO X, FANG G, LI G, MA H, FAN H, YU L, MA C, WU X, DENG D, WEI M, TAN D, SI R, ZHANG S, LI J, SUN L, TANG Z, PAN X, BAO X. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen[J]. Science, 2014, 344:616-619.
  • Related Articles

    [1]ZHANG Li-li, ZHOU Jian, FANG Cong, SUN Xiao-yan. Recent Advances in Synthesis, Structure Analysis, and Catalytic Reaction Mechanism of Metal Nanoclusters Based on Soft Ionization Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2024, 45(1): 69-89. DOI: 10.7538/zpxb.2023.0088
    [2]GE Xi-yang, YIN Yi-yan, OUYANG Jin, NA Na. Recent Development on the Detection and Monitoring of Chemical Intermediates by Ambient Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2024, 45(1): 31-43. DOI: 10.7538/zpxb.2023.0081
    [3]ZHANG Yi-teng, ZHANG Xue-meng, MIN Qian-hao. Recent Advances in Detection of Electrochemical Reaction Intermediates at the Solid-Liquid Interface by Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2024, 45(1): 14-30. DOI: 10.7538/zpxb.2023.0087
    [4]LIU Shuang-jing, LIU Wen-jing, LIU Xiao-ning, MIAO Jing-jing, ZHU Yue-tong, FENG Wei-sheng, WANG Yan-zhi. Analysis of Sterones Isomers in Achyranthis Bidentatae Radix by Online Energy-Resolved Mass Spectrometry Combined with Quantum Structural Calculation[J]. Journal of Chinese Mass Spectrometry Society, 2023, 44(5): 635-642. DOI: 10.7538/zpxb.2023.0031
    [5]WEI Fu-qiang, HUANG Ze-jian, JIANG You, DAI Xin-hua, FANG Xiang, JIN Shang-zhong. Gas Quantitative Analysis Method of Online Process Mass Spectrometry Based on Separation of Overlapping Spectral Peaks[J]. Journal of Chinese Mass Spectrometry Society, 2023, 44(4): 496-507. DOI: 10.7538/zpxb.2022.0167
    [6]WU Man-man, HUANG Dou, CEN Yan-xiang, QIAO Jia, OU Zi-feng, GAO Wei, HUANG Zheng-xu. Application of Online Cryogenic Enrichment System-Comprehensive Two-dimensional Gas Chromatograph-Time of Flight Mass Spectrometer for Monitoring Volatile Organic Compounds in Ambient Air[J]. Journal of Chinese Mass Spectrometry Society, 2020, 41(5): 443-452. DOI: 10.7538/zpxb.2019.0061
    [7]WANG Fu-hua, WU Man-man, QIAO Jia, CHEN Jia-xin, LV Jin-nuo, CAI Wei-guang, WANG Jian-kai, GAO Wei. Development of New Online Monitoring System of Adsorption and Concentration for Atmospheric Volatile Organic Compounds[J]. Journal of Chinese Mass Spectrometry Society, 2019, 40(2): 177-188. DOI: 10.7538/zpxb.2018.0103
    [8]HUANG Ze-jian, JIANG You, YUE Jun-rong, GONG Xiao-yun, LIU Mei-ying, FANG Xiang. Design and Test for On-Line Rapid Process Mass Spectrometer[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(4): 399-406. DOI: 10.7538/zpxb.2017.0149
    [9]QI Ya-chen, LIU Wei, JIANG Ji-chun, WANG Wei-guo, LI Qing-yun, TIAN Di, HOU Ke-yong, LI Hai-yang. On-Line Analysis of Cholrobenzenes by Windowless RF Discharge Signal Photon Ionization Mass Spectrometer[J]. Journal of Chinese Mass Spectrometry Society, 2015, 36(6): 506-512. DOI: 10.7538/zpxb.2015.36.06.0506
    [10]TANG Bin, ZHAO Wu-duo, ZHU Li-ping, HOU Ke-yong, HUANG Yun-guang, LI Hai-yang. Online Monitoring the Discharging Products of SF6 with Photoelectron Ionization Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2015, 36(5): 454-459. DOI: 10.7538/zpxb.2015.36.05.0454
  • Cited by

    Periodical cited type(1)

    1. 谢新侃. 质谱仪在化工企业周围环境分析中的应用研究. 天津化工. 2024(01): 16-18 .

    Other cited types(0)

Catalog

    Article views (740) PDF downloads (51) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return