GAO Li-ben, DONG Yu-jie. Research Progress of Inorganic Mass Spectrometry Applied to Analysis of Nuclear Elements from High-Temperature Gas-Cooled Reactor and Its Spent Fuel[J]. Journal of Chinese Mass Spectrometry Society, 2017, 38(3): 349-360. DOI: 10.7538/zpxb.youxian.2016.0061
Citation: GAO Li-ben, DONG Yu-jie. Research Progress of Inorganic Mass Spectrometry Applied to Analysis of Nuclear Elements from High-Temperature Gas-Cooled Reactor and Its Spent Fuel[J]. Journal of Chinese Mass Spectrometry Society, 2017, 38(3): 349-360. DOI: 10.7538/zpxb.youxian.2016.0061

Research Progress of Inorganic Mass Spectrometry Applied to Analysis of Nuclear Elements from High-Temperature Gas-Cooled Reactor and Its Spent Fuel

More Information
  • At the preliminary stage of mass spectrometry (MS) technology development, it was mainly applied to determine the nuclear industry related inorganic isotope abundance. With the rapid development of nuclear industry, MS has been employed to analyze the impurities in nuclear fuel and nuclear materials, burnup of nuclear fuels, and nuclides from high-temperature gas-cooled reactor (HTGR). The study mainly discussed the basic principles, application, and the research method’s advantages and disadvantages of inorganic mass spectrometry applied to analysis of tritium from HTGR, trace amounts of plutonium and neptunium and 14C in its spent fuel. The application and R&D status of gas isotope mass spectrometer (GIMS), inductively coupled plasma mass spectrometer (ICP-MS), laser resonance ionization mass spectrometry (LRIMS), and accelerator mass spectrometer (AMS) at domestic and abroad were introduced, and problems of the instruments, application and development tendency were pointed out. The low resolution GIMS has the disadvantages of strict conditions, limited scope of application, and complex error during the analysis of hydrogen isotopes, while the high resolution GIMS is overcome the disadvantages of low resolution GIMS, and able to realize the rapid and accurate analysis with low determinative error. However, high resolution GIMS is embargoed due to the special military applications, and need to independently develop it by China. The disadvantages of ICP-MS such as poor anti-interference performance, low resolution, analyze by destroy the simple, and severe inhibition effects for space charge leads its low accuracy, which limit the application in nuclear field. Although there are prominent advantages for LRIMS, it still has poor reproducibility of laser source as one of laser MS, and need further research. China is developing rapidly in import and independent R&D of AMS, but there are many problems in the spent fuel and other nuclear industry related application and R&D field, such as low sensitivity and limited determination of special or several nuclides. The main application of AMS with gas ion source is determination of 14C, and the sensitivity reaches to 10-16. Until now, the R&D of gas ion source for AMS hasn’t be reported in China. This study discussed future developing direction of relevant mass spectrometry and outlined the potential solutions. In order to improve the efficiency of MS application on HTGR research, it is urgent to develop the easy operating intelligent instruments with small volume and simple structure.
  • [1]
    LIU F J, FAN M, Wei X Y, et al. Application of mass spectrometry in the characterization of chemicals in coal-derived liquids[J]. Mass Spectrometry Reviews, 2016, doi: 10.1002/mas.21504.
    [2]
    李金英,郭冬发,吉艳琴,等. 电感耦合等离子体质谱、热电离质谱和二次离子质谱技术在核工业中的新进展[J]. 质谱学报,2010,31(5):257-263.LI Jinying, GUO Dongfa, JI Yanqin, et al. Recent progress of nuclear technological application for inductively coupled plasma mass spectrometry (ICP-MS), thermal ionization mass spectrometry (TIMS) and secondary ion mass spectrometry (SIMS)[J]. Journal of Chinese Mass Spectrometry Society, 2010, 31(5): 257-263(in Chinese).
    [3]
    TANG C, TANG Y, ZHU J, et al. Research and development of fuel element for Chinese 10 MW high temperature gas-cooled reactor[J]. Journal of Nuclear Science and Technology, 2000, 37(9): 802-806.
    [4]
    吴宗鑫. 我国高温气冷堆的发展[J]. 核动力工程,2000,21(1):39-43.WU Zongxin. The development of in China[J]. Nuclear Power Engineering, 2000, 21(1): 39-43(in Chinese).
    [5]
    黎辉,梅其良,付亚茹. 核电厂氚的产生和排放分析[J]. 原子能科学技术,2015,49(4):739-743.LI Hui, MEI Qiliang, FU Yaru. Analyses of generation and release of tritium in nuclear power plant[J]. Atomic Energy Science and Technology, 2015, 49(4): 739-743(in Chinese).
    [6]
    曲静原,曹建主,李红. 中国高温气冷堆核电示范工程环境辐射影响初步分析[J]. 核动力工程,2006,27(6):109-112.QU Jingyuan, CAO Jianzhu, LI Hong. Preliminary radiological consequence assessment of China pilot HTR power plant[J]. Nuclear Power Engineering, 2006, 27(6): 109-112(in Chinese).
    [7]
    刘原中. 模块式高温气冷堆正常运行工况下气载放射性物质向环境释放量的计算方法[J]. 辐射防护,1994,14(1):10-14.LIU Yuanzhong. Calculation methods of the release of airborne radio nuclides to the environment during routine operation of the modular high temperature gascooled reactor[J]. Radiation Protection, 1994, 14(1): 10-14(in Chinese).
    [8]
    贾仁东,刘滨,蔡进,等. Np-237在AP1000首循环堆芯中的嬗变研究[J]. 核科学与技术,2015,3(3):78-87.JIA Rendong, LIU Bin, CAI Jin, et al. Transmutation of Np-237 in the first cycle of AP1000 Core[J]. Journal of Nuclear Science and Technology, 2015, 3(3): 78-87(in Chinese).
    [9]
    刘权卫. 大量铀中镎钚的分离与测定[D]. 北京:中国原子能科学研究院,2005.
    [10]
    赵云峰,陈靖. 高温气冷堆乏燃料后处理首端技术研究进展[J]. 原子能科学技术,2008,42(5):416-422.ZHAO Yunfeng, CHEN Jing. Progress in head-end reprocessing of spent fuels from high-temperature gas-cooled reactor[J]. Atomic Energy Science and Technology, 2008, 42(5): 416-422(in Chinese).
    [11]
    ICHIKI H, KAWAGUCHI T, ISHIBASHI K, et al. Radiation monitoring in a synchrotron light source facility using magnetically levitated electrode ionization chambers[J]. Nuclear Science and Technology, 2009, 46(12): 1113-1119.
    [12]
    THORNTON M I, VASSALLO G, MILLER J, et al. Design and performance testing of a tritium calorimeter[J]. Nuclear Instruments and Methods in Physics Research Section A, 1995, 363(3): 598-603.
    [13]
    SHUA W M, MATSUYAMAB M, SUZUKI, et al. Characteristics of a promising tritium process monitor detecting bremsstrahlung X-rays[J]. Science Direct, 2004, 521(2/3): 423-429.
    [14]
    刘凌,胡守印. HTR-10一回路冷却剂中氚活度的测量[J]. 核科学与工程,2008,28(3):244-248.LIU Ling, HU Shouyin. Tritium activity measurement of the primary loop coolant of HTR-10[J]. Chinese Journal of Nuclear Science and Engineering, 2008, 28(3): 244-248(in Chinese).
    [15]
    石磊,李金英,赵志军, 等. 含氚氢同位素丰度分析应用于氚半衰期的测定[J]. 原子能科学技术,2010,44(增刊):556-557.SHI Lei, LI Jinying, ZHAO Zhijun, et al. Half-life determination of T decay with hydrogen isotope’s analysis by low resolution MS[J]. Atomic Energy Science and Technology, 2010, 44(Suppl): 556-557(in Chinese).
    [16]
    DESIDERI D, MELI M A, ROSELLI C, et al. Determination of 236U and transuranium elements in depleted uranium ammunition by α-spectrometry and ICP-MS[J]. Analytical and Bioanalytical Chemistry, 2002, 374(6): 1091-1095.
    [17]
    KUPPERS G, ERDTMANN G. Determination of traces of uranium in tungesten and molybdenum by radiochemical neutron activation analysis via the fission product 140Ba[J]. Journal of Radioanalytical and Nuclear Chemistry, 1995, 198(198): 457-466.
    [18]
    唐培家,李鲲鹏. γ能谱法测定铀、钚同位素丰度[J]. 同位素,2001,14(3/4):166-173.TANG Peijia, LI Kunpeng. Determination of isotopic abundance of uranium and plutonium by γ-ray spectrometry[J]. Journal of Isotopes, 2001, 14(3/4): 166-173(in Chinese).
    [19]
    李金英,王凡,赵永刚,等. 激光质谱的研究现状与进展[J]. 原子能科学技术,2012,46(10):1165-1174.LI Jinying, WANG Fan, ZHAO Yonggang, et al. Recent research and progress of laser mass spectrometry[J]. Atomic Energy Science and Technology, 2012, 46(10): 1165-1174(in Chinese).
    [20]
    刘克新,丁杏芳,傅东坡,等. 北京大学AMS~(14)C国际比对样品测量[J]. 第四纪研究,2007,27(3):469-473.LIU Kexin, DING Xingfang, FU Dongpo, et al. The AMS measurement of viri samples at Peking University[J]. Quaternary Sciences, 2007, 27(3): 469-473(in Chinese).
    [21]
    石磊,李金英,纪存兴,等. 氢同位素气体分析进展[J]. 中国核科学技术进展报告,2009,1(11):246-258.SHI Lei, LI Jinying, JI Cunxing, et al. Analysis of hydrogen isotopes by GC, MS and GC-MS[J]. Progress report on China Nuclear Science and Technology, 2009, 1(11): 246-258(in Chinese).
    [22]
    关安民,王遂福,孙义林,等. 尼尔逊离子源重离子束流的发射度[J]. 核技术,1986,(1):38-41.GUAN Anmin, WANG Suifu, SUN Yilin, et al. The emittance of the heavy ion beam from nelson ion source[J]. Nuclear Techniques, 1986, (1): 38-41(in Chinese).
    [23]
    王世俊. 质谱学在核科学技术中的应用概况及其展望[J]. 核科学与工程,1996,16(1):75-80.WANG Shijun. Application of mass spectrometry in nuclear science and technology and its prospect[J]. Chinese Journal of Nuclear Science and Engineering, 1996, 16(1): 75-80(in Chinese).
    [24]
    李兆丽,胡瑞忠,彭建堂,等. 稀有气体同位素质谱仪及其在地球化学中的应用研究[J]. 地球与环境,2006,34(2):12-18. LI Zhaoli, HU Ruizhong, PENG Jiantang, et al. Review on noble gas isotope mass spectrograph and its application in geochemistry[J]. 2006, 34(2): 12-18(in Chinese).
    [25]
    MCLNTEER B B, POTTER R M. Analysis of H-D-T mixtures by mass spectrometry[R]. 1954, LA-2086.
    [26]
    纪存兴,王钢,纪存喜,等. 氢同位素气体质谱分析进展[J]. 科技创新导报,2010,21:13.JI Cunxing, WANG Gang, JI Cunxi, et al. Analysis of hydrogen isotopes by MS[J]. Science and Technology Innovation Herald, 2010, 21: 13(in Chinese).
    [27]
    黄刚,刘文科,龙兴贵,等. 用MAT 253同位素质谱仪测定气氖混合气组分[J]. 质谱学报,2006,27(增刊):37-38. HUANG Gang, LIU Wenke, LONG Xinggui, et al. Measurement of the protium-deuterium mixture composition by MAT 253 mass spectrometer[J]. Journal of Chinese Mass Spectrometry Society, 2006, 27(Suppl): 37-38(in Chinese).
    [28]
    张海路,喻祯静,李庆,等. 氢氘化锂氘丰度质谱分析技术研究[J]. 质谱学报,2001,22(1):25-31.ZHANG Hailu, YU Zhenjing, LI Qing, et al. Study on mass spectrum analyzing technology of deuterium abundance in lithium hydrogenate deuterate[J]. Journal of Chinese Mass Spectrometry Society, 2001, 22(1): 25-31(in Chinese).
    [29]
    张海路,郭文胜,李洁,等. 氢同位素分馏效应校正技术研究[J]. 原子能科学技术,2004,38(增刊):175-178.ZHANG Hailu, GUO Wensheng, LI Jie, et al. Study on calibration technology on hydrogen isotope fractionation effect[J]. Atomic Energy Science and Technology, 2004, 38(Suppl): 175-178(in Chinese).
    [30]
    孟庆强,金之钧,刘文汇,等. MAT 253气体同位素质谱仪测定微量氢同位素组成进样方法初探[J]. 岩矿测试,2010,29(6):639-642.MENG Qingqiang, JIN Zhijun, LIU Wenhui, et al. An improved sampling method for measurement of trace hydrogen isotopic composition by MAT 253 gas isotope mass spectrometer[J]. Rock and Mineral Analysis, 2010, 29(6): 639-642(in Chinese).
    [31]
    石磊,李金英,慕俊娟,等. 氢-氘体系的氘丰度质谱分析技术[J]. 核化学与放射化学,2009,31(3):148-151.SHI Lei, LI Jinying, MU Junjuan, et al. Measurement of dueterium abundance in hydrogen dueterium system by mass spectrometry[J]. Journal of Nuclear and Radiochemistry, 2009, 31(3): 148-151(in Chinese).
    [32]
    刘文贵,唐明霞. 提高气体同位素质谱计线性的研究[J]. 化学研究与应用,2010,22(12):1569-1572.LIU Wengui, TANG Mingxia. How to improve the linearity of gas isotope mass spectrometer[J]. Chemical Research and Application, 2010, 22(12): 1569-1572(in Chinese).
    [33]
    刘文贵,唐明霞. 同位素质谱仪的法拉第接收器[J]. 分析仪器,2013,(2):57-62.LIU Wengui, TANG Mingxia. Faraday collector of isotope mass spectrometer[J]. Analytical Instrument, 2013, (2): 57-62(in Chinese).
    [34]
    戴金星. 我国有机烷烃气的氢同位素的若干特征[J]. 石油勘探与开发,1990,(5):28-32.DAI Jinxing. Characteristic of hydrogen isotopes of paraffinic gas in China[J]. Petromleum Exploration and Development, 1990, (5): 28-32(in Chinese).
    [35]
    刘琦,邓中国. 高丰度氚同位素的质谱分析[J]. 质谱学杂志,1985,6(3):15-21.LIU Qi, DENG Zhongguo. Mass spectrometric analysis of high abundance of tritium isotopes[J]. 1985, 6(3): 15-21(in Chinese).
    [36]
    罗学建,蒋国强. 氢同位素的质谱分析方法[C]. 第三届同位素技术与应用学术研讨会,2005.
    [37]
    涂林玲,王华,冯玉梅. MM903同位素气体质谱仪的升级改造[J]. 质谱学报,2004,25(增刊):233-235.TU Linling, WANG Hua, FENG Yumei. The upgrading improvement on MM903 isotope gas mass spectrometer[J]. Journal of Chinese Mass Spectrometry Society, 2004, 25(Suppl): 233-235(in Chinese).
    [38]
    林跃武. 高分辨率气体同位素质谱计的研制[R]. 无机与同位素质谱学术交流会,2014.
    [39]
    杨通在,汪小琳. 国防领域放射分析化学[J]. 化学进展,2011,23(7):1520-1526.YANG Tongzai, WANG Xiaolin. Current status and prospects of radioanalytical chemistry in the national defense[J]. Progress in Chemistry, 2011, 23(7): 1520-1526(in Chinese).
    [40]
    BINGS N H, BOGAERTS A, BROEKAERT J A. Atomic spectroscopy: a review[J]. Analytical Chemistry, 2010, 82(12): 4653-4681.
    [41]
    VORS E, SEMEROK A, WAGNER J F. Experimental evaluation of the measurement of isotope ratios by time of flight mass spectrometry with laser ablation[J]. Applied Physics A, 1999, 69(Suppl): 165-166.
    [42]
    MAGARA M, HANZAWA Y, ESAKA F. Development of analytical techniques for ultra trace amounts of nuclear materials in environmental samples using ICP-MS for safeguards[J]. Applied Radiation and Isotopes, 2000, 53: 87-90.
    [43]
    赵墨田. 同位素质谱和无机质谱[J]. 分析试验室,1997,16(1):92-100.ZHAO Motian. Isotope mass spectrometry and inorganic mass spectrometry[J]. Analytical Laboratory, 1997, 16(1): 92-100(in Chinese).
    [44]
    HOUK R S, FASSEL V A, FLESCH G D, et al. Inductively coupled argon plasma as an ion source for mass spectrometric determination of trace elements[J]. Analytical Chemistry, 1980, 52(14): 2263-2289.
    [45]
    赵墨田. 同位素质谱仪技术进展[J]. 现代科学仪器,2012,(5):5-14. ZHAO Motian. Recent technology progress of isotope mass spectrometer[J]. Modern Scientific Instruments, 2012, (5): 5-14(in Chinese).
    [46]
    苏玉兰,金花,应浙聪,等. TEVA-UTEVA萃取色层分离后处理铀产品中镎的方法研究[J]. 原子能科学技术,2014,48(5):786-791.SU Yulan, JIN hua, YING Zhecong, et al. Separation method of neptunium from reprocessed uranium by TEVA-UTEVA extraction chromatography column[J]. Atomic Energy Science and Technology, 2014, 48(5): 786-791(in Chinese).
    [47]
    QUACH D L, MINCHER B J, WAI C M. Supercritical fluid extraction and separation of uranium from other actinides[J]. Journal of Hazardous Materials, 2014, 274: 360-366.
    [48]
    刘权卫,吴继宗,肖国平,等. 铀产品中镎和钚的分离与测定方法[J]. 核化学与放射化学,2008,30(3):178-183.LIU Quanwei, WU Jizong, XIAO Guoping, et al. Separation and determination of neptunium and plutonium in the uranium product[J]. Journal of Nuclear and Radiochemistry, 2008, 30(3): 178-183(in Chinese).
    [49]
    李力力,李金英,赵永刚,等. 铀基体中痕量钚的分离[J]. 核化学与放射化学,2007,29(3):135-140.LI Lili, LI Jinying, ZHAO Yonggang, et al. Separation of trace plutonium from uranium matrix[J]. Journal of Nuclear and Radiochemistry, 2007, 29(3): 135-140(in Chinese).
    [50]
    吉艳琴,李金英. 痕量镎和钚的ICP-MS分析方法[J]. 核化学与放射化学,2008,30(2):103-107.JI Yanqin, LI Jinying. Determination of trace neptunium and plutonium by ICP-MS[J]. Journal of Nuclear and Radiochemistry, 2008, 30(2): 103-107(in Chinese).
    [51]
    金花,徐琛,应浙聪,等. TPB-TEVA萃取色层分离-同位素稀释质谱法测定后处理铀产品中的痕量钚[J]. 核科学与工程,2013,33(3):293-298.JIN Hua, XU Chen, YING Zhecong, et al. Determination of trace plutonium in reprocessed uranium product by TBP-TEVA column extraction separation-isotope dilution ICP-MS[J]. Nuclear Science and Engineering, 2013, 33(3): 293-298(in Chinese).
    [52]
    马特奇,金玉仁,王江,等. 痕量镎钚的同步分离测量[J]. 核化学与放射化学,2011,33(5):262-267.MA Teqi, JIN Yuren, WANG Jiang, et al. Synchronoous separation and determination of trace neptunium and plutonium[J]. Journal of Nuclear and Radiochemistry, 2011, 33(5): 262-267(in Chinese).
    [53]
    周国庆,朱凤蓉,李梅,等. 石墨探针进样电感耦合等离子体质谱法测定强铀干扰下超微量240Pu/239Pu同位素比[J]. 分析化学,2011,39(11):1682-1688.ZHOU Guoqing, ZHU Fengrong, LI Mei, et al. Isotopic ratio of 240Pu/239Pu measurements under interference of uranium by inductively coupled plasma-mass spectrometry with direct sampling insertion[J]. Chinese Joumal of Analytical Chemistry, 2011, 39(11): 1682-1688(in Chinese).
    [54]
    李志明. 质谱技术及其在核科学中的应用[R]. 无机与同位素质谱学术交流会,2014.
    [55]
    PAYNE M G, DENG L. Application of resonance ionization mass spectrometry[J]. Review of Scientific Instruments, 1994, 65(8): 2433-2459.
    [56]
    沈小攀,李志明,翟利华,等. 激光共振电离质谱法选择性电离铀钚混合物中的痕量钚[J]. 质谱学报,2013,34(5):269-273.SHEN Xiaopan, LI Zhiming, ZHAI Lihua, et al. Selective ionization of trace plutonium from uranium plutonium mixture by laser resonance ionization mass spectrometer[J]. Journal of Chinese Mass Spectrometry Society, 2013, 34(5): 269-273(in Chinese).
    [57]
    WENDT K, BLAUM K, DIEL S, et al. Selective ultrace analysis of Ca by laser resonance ionization[J]. Hyperfine Interactions, 2000, 127: 519-522.
    [58]
    RIEGEL J, DEIBENBERGER R, HERRMANN G, et al. Urban resonance ionization mass spectroscopy for trace analysis of neptunium[J]. Applied Physics B, 1993, 56: 275-280.
    [59]
    李春明,戴松涛,董国轩,等. 溅射原子化激光共振电离-飞行时间质谱仪的研究及应用进展[J]. 光谱学与光谱分析,1997,17(1):102-107.LI Chunming, DAI Songtao, DONG Guoxuan, et al. Development of a SIRI-TOF-MS and the application research progress[J]. Spectroscopy and Spectral Analysis, 1997, 17(1): 102-107(in Chinese).
    [60]
    李志明,朱凤蓉,张子斌,等. 激光共振电离质谱同位素分析技术[J]. 质谱学报,2004,25(增刊):189-190. LI Zhiming, ZHU Fengrong, ZHANG Zibin, et al. Isotopic analysis technique in laser resonance ionization mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2004, 25(Suppl): 189-191(in Chinese).
    [61]
    KRATZ J V. Ultratrace analysis of long-lived radio nuclides by resonance ionization mass spectrometry (RIMS)[J]. Journal of Radio Analytical and Nuclear Chemistry, 2014, 303(2): 1361-1366.
    [62]
    TRAUTMANN N, PASSLER G, WENDT K D. Ultratrace analysis and isotope ratio measurements of long-lived radioisotopes by resonance ionization mass spectrometry (RIMS)[J]. Analyticaland Bioanalytical Chemistry, 2004, 378(2): 348-355.
    [63]
    JIANG S, HE M, JIANG S, et al. Development of AMS measurements and applications at the CIAE[J]. Nuclear Instruments and Methods in Physics Research Section B, 2000, 172(1/2/3/4): 87-90.
    [64]
    WANG W, GUAN Y, HE M, et al. A method for measurement of ultratrace 79Se with accelerator mass spectrometry[J]. Nuclear Instruments and Methods in Physics Research Section B, 2010, 268(7/8): 759-763.
    [65]
    姜山,杨旭冉,何明,等. 加速器质谱在核科学中的应用[J]. 深圳大学学报:理工,2015,32(1):8-16.JIANG Shan, YANG Xuran, HE Ming, et al. Applications of accelerator mass spectrometry in nuclear science[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(1): 8-16(in Chinese).
    [66]
    OUGHTO D H, SKIPPERUD L, FIFIELD L K, et al. Accelerator mass spectrometry measurement of 240Pu/239Puisotope ratios in Novaya Zemlya and Kara Sea sediments[J]. Applied Radiation and Isotopes, 2004, 61(2/3): 249-253.
    [67]
    LACHNER J, CHRISTL M, ALFIMOV V, et al. 41Ca, 14C and 10Be concentrations in coral sand from the Bikini atoll[J]. Journal of Environmental Radioactivity, 2014, 129: 68-72.
    [68]
    姜山,董克君,何明. 超灵敏加速器质谱技术进展及应用[J]. 岩矿测试,2012,31(1):7-23.JIANG Shan, DONG Kejun, HE Ming. Development and application of ultrasensitive accelerator mass spectrometry[J]. Rock and Mineral Analysis, 2012, 31(1): 7-23(in Chinese).
    [69]
    刘克新,郭之虞,韩宝玺,等. 北大加速器质谱技术发展与应用研究[C]. 第四届全国高压型加速器技术及应用学术交流会,2004:60-66.
    [70]
    周卫健,卢雪峰,武振坤,等. 西安加速器质谱中心多核素分析的加速器质谱仪[J]. 核技术,2007,30(8):702-708.ZHOU Weijian, LU Xuefeng, WU Zhenkun, et al. The AMS facilty at Xi’an AMS Centre[J]. Nuclear Technology, 2007, 30(8): 702-708(in Chinese).
    [71]
    牛振川,周卫健,吴书刚,等. 大气14CO2的时空分异特征及其在化石源CO2示踪中的应用[J]. 地球环境学报,2014,5(1):1-9.NIU Zhenchuan, ZHOU Weijian, WU Shugang, et al. Spatial-temporal characteristics of atmospheric 14CO2 and its applications on thetracing of fossil fuel CO2[J]. Journal of Earth Environment, 2014, 5(1): 1-9(in Chinese).
    [72]
    董克君,何明,姜山.一门十分活跃的核分析技术-加速器质谱(AMS)最新进展[J]. 物理,2006,35(6):508-513.DONG Kejun, HE Ming, JIANG Shan. An activity nuclear analysis technology-the lasted development of accelerator mass spectrometry[J]. Physics, 2006, 35(6): 508-513(in Chinese).
    [73]
    杨旭冉,庞义俊,何明,等. 用于AMS测量的14C样品制备方法[J]. 同位素,2015,28(2):65-68.YANG Xuran, PANG Yijun, HE Ming, et al. Method of 14C sample preparation for AMS measurement[J]. Journal of Isotopes, 2015, 28(2): 65-68(in Chinese).
    [74]
    OGNIBENE T J, THOMAS A T, DALEY P F, et al. An interface for the direct coupling of small liquid samples to AMS[J]. Nuclear Instruments and Methods in Physics Research Section B, 2015, 361: 173-177.
    [75]
    RAMSEY C C B, DITCHFIELD P, HUMM M. Using a gas ion source for radiocarbon AMS and GC-AMS[J]. Radiocarbon, 2004, 46(1): 25-32.
    [76]
    SCHNEIDER RJ, KIM SW, VON REDEN KF, et al. A gas ion source for continuous-flow AMS[J]. Nuclear Instruments & Methods B, 2004, 223/224(223): 149-154.
    [77]
    ROSENHEIM B E, THORROLD S R, ROBERTS M L. Accelerator mass spectrometry 14C determination in CO2 produced from laser decomposition of aragonite[J]. Rapid Communication in Mass Spectrometry, 2008, 22(21): 3443-3449.
    [78]
    MCINTYRE C P, SYLVA S P, ROBERTS M L. Gas chromatograph-combustion system for 14C-accelerator mass spectrometry[J]. Analytical Chemistry, 2009, 81(15): 6422-6428.
    [79]
    SYNAL H A, DOBELI M, JACOB S, et al. Radiocarbon AMS towards its low-energy limits[J]. Nuclear Instruments and Methods in Physics Research, 2004, (223/224): 339-345.

Catalog

    Article views (732) PDF downloads (1085) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return