Citation: | CHEN Xia-min, LIU Chun-jiang, CUI Cun-hao, ZHOU Zhong-yue. Influence of Acid-washing Pretreatment on Biomass Pyrolysis by High-resolution Mass Spectrometry and Principal Component Analysis[J]. Journal of Chinese Mass Spectrometry Society, 2020, 41(4): 330-339. DOI: 10.7538/zpxb.2019.0062 |
[1] |
PARIKKA M. Global biomass fuel resources[J]. Biomass & Bioenergy, 2004, 27(6): 613-620.
|
[2] |
WANG S R, DAI G X, YANG H P, LUO Z Y. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62: 33-86.
|
[3] |
孙韶波,翁俊桀,贾良元,王毓,齐飞,周忠岳. 真空紫外光电离质谱研究稻壳和稻秆的热解[J]. 质谱学报,2013,34(1):1-7.SUN Shaobo, WENG Junjie, JIA Liangyuan, WANG Yu, QI Fei, ZHOU Zhongyue. Pyrolysis study of rice husk and rice straw by vacuum ultraviolet photoionization mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2013, 34(1): 1-7(in Chinese).
|
[4] |
OUDENHOVEN S R G, WESTERHOF R J M, ALDENKAMP N, BRILMAN D W F, KERSTEN S R A. Demineralization of wood using wood-derived acid: towards a selective pyrolysis process for fuel and chemicals production[J]. Journal of Analytical and Applied Pyrolysis, 2013, 103: 112-118.
|
[5] |
MESSINA L I G, BONELLI P R, CUKIERMAN A L. Effect of acid pretreatment and process temperature on characteristics and yields of pyrolysis products of peanut shells[J]. Renewable Energy, 2017, 114: 697-707.
|
[6] |
FAHMI R, BRIDGWATER A V, DARVELL L I, JONES J M, YATES N, THAIN S, DONNISON I S. The effect of alkali metals on combustion and pyrolysis of Lolium and Festuca grasses, switchgrass and willow[J]. Fuel, 2007, 86(10): 1560-1569.
|
[7] |
陈夏敏,李亚敏,文武,朱亚楠,杨玖重,潘洋. 在线热解-光电离质谱法研究Li2CO3对松木热解的影响[J]. 质谱学报,2018,39(3):268-277.CHEN Xiamin, LI Yamin, WEN Wu, ZHU Ya′nan, YANG Jiuzhong, PAN Yang. On-line study on the catalytic pyrolysis of pine wood over Li2CO3 using pyrolysis-photoionization mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(3): 268-277(in Chinese).
|
[8] |
RAVEENDRAN K, GANESH A, KHILAR K C. Influence of mineral matter on biomass pyrolysis characteristics[J]. Fuel, 1995, 74(12): 1812-1822.
|
[9] |
JENSEN A, DAM JOHANSEN K, WOJTOWICZ M A, SERIO M A. TG-FTIR study of the influence of potassium chloride on wheat straw pyrolysis[J]. Energy & Fuels, 1998, 12(5): 929-938.
|
[10] |
LEIJENHORST E J, WOLTERS W, van de BELD L, PRINS W. Inorganic element transfer from biomass to fast pyrolysis oil: review and experiments[J]. Fuel Processing Technology, 2016, 149: 96-111.
|
[11] |
CHEN M Q, WANG J, ZHANG M X, CHEN M G, ZHU X F, MIN F F, TAN Z C. Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating[J]. Journal of Analytical and Applied Pyrolysis 2008, 82(1): 145-150.
|
[12] |
FANG X, JIA L. Experimental study on ash fusion characteristics of biomass[J]. Bioresource Technology, 2012, 104: 769-774.
|
[13] |
WANG Y P, DUAN D L, LIU Y H, RUAN R, FU G M, DAI L L, ZHOU Y, YU Z T, WU Q H, ZENG Z H. Properties and pyrolysis behavior of moso bamboo sawdust after microwave-assisted acid pretreatment[J]. Journal of Analytical and Applied Pyrolysis, 2018, 129: 86-92.
|
[14] |
EOM I Y, KIM K H, KIM J Y, LEE S M, YEO H M, CHOI I G, CHOI J W. Characterization of primary thermal degradation features of lignocellulosic biomass after removal of inorganic metals by diverse solvents[J]. Bioresource Technology, 2011, 102(3): 3437-3444.
|
[15] |
ASADIERAGHI M, DAUD W. Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: effects of demineralization by diverse acid solutions[J]. Energy Conversion and Management, 2014, 82: 71-82.
|
[16] |
WANG J J, MA X Q, YU Z S, PENG X W, LIN Y S. Studies on thermal decomposition behaviors of demineralized low-lipid microalgae by TG-FTIR[J]. Thermochimica Acta, 2018, 660: 101-109.
|
[17] |
TAN H, WANG S R. Experimental study of the effect of acid-wash pretreatment on biomass pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2009, 37(6): 668-672.
|
[18] |
HU Y M, WANG S A, WANG Q A, HE Z X, LIN X C, XU S N, JI H S, LI Y. Effect of different pretreatments on the thermal degradation of seaweed biomass[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2271-2281.
|
[19] |
MICHAILOF C, SFETSAS T, STEFANIDIS S, KALOGIANNIS K, THEODORIDIS G, LAPPAS A. Quantitative and qualitative analysis of hemicellulose, cellulose and lignin bio-oils by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry[J]. Journal of Chromatography A, 2014, 1 369: 147-160.
|
[20] |
STEFANIDIS S D, HERACLEOUS E, PATIAKA D T, KALOGIANNIS K G, MICHAILOF C M, LAPPAS A A. Optimization of bio-oil yields by demineralization of low quality biomass[J]. Biomass & Bioenergy, 2015, 83: 105-115.
|
[21] |
STAS M, CHUDOBA J, KUBICKA D, BLAZEK J, POSPISIL M. Petroleomic characterization of pyrolysis bio-oils: a review[J]. Energy & Fuels, 2017, 31(10): 10 283-10 299.
|
[22] |
LIU Y, SHI Q, ZHANG Y H, HE Y L, CHUNG K H, ZHAO S Q, XU C M. Characterization of red pine pyrolysis bio-oil by gas chromatography-mass spectrometry and negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Energy & Fuels, 2012, 26(7): 4532-4539.
|
[23] |
史权,董智勇,张亚和,赵锁奇,徐春明. 石油组分高分辨质谱的数据处理[J]. 分析测试学报,2008,27(11):246-248.SHI Quan, DONG Zhiyong, ZHANG Yahe, ZHAO Suoqi, XU Chunming. Data processing of high-resolution mass spetra for crude oil and its distillations[J]. Journal of Instrumental Analysis, 2008, 27(11): 246-248(in Chinese).
|
[24] |
JARVIS J M, McKENNA A M, HILTEN R N, DAS K C, RODGERS R P, MARSHALL A G. Characterization of pine pellet and peanut hull pyrolysis bio-oils by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Energy & Fuels, 2012, 26(6): 3810-3815.
|
[25] |
MANHOI H, INJOON Y, EUNSUK P, YOUNG HWAN K, JONGSHIN Y, EUNKYOUNG K, MYOUNG-HAN N, JAESUK K, SUNGHWAN K. Combination of statistical methods and Fourier transform ion cyclotron resonance mass spectrometry for more comprehensive, molecular-level interpretations of petroleum samples[J]. Analytical Chemistry, 2010, 82(1): 211-219.
|
[26] |
ZHOU Z Y, CHEN X M, MA H, LIU C J, ZHOU C Q, QI F. Real-time monitoring biomass pyrolysis via on-line photoionization ultrahigh-resolution mass spectrometry[J]. Fuel, 2019, 235: 962-971.
|
[27] |
CHENG T T, HAN Y H, ZHANG Y F, XU C M. Molecular composition of oxygenated compounds in fast pyrolysis bio-oil and its supercritical fluid extracts[J]. Fuel, 2016, 172: 49-57.
|
[28] |
JIA L Y, BUENDIA-KANDIA F, DUMARCAY S, POIROT H, MAUVIEL G, GERARDIN P, DUFOUR A. Fast pyrolysis of heartwood, sapwood, and bark: a complementary application of online photoionization mass spectrometry and conventional pyrolysis gas chromatography/mass spectrometry[J]. Energy & Fuels, 2017, 31(4): 4078-4089.
|
[29] |
JIA L Y, LE-BRECH Y, SHRESTHA B, BENTE-VON FROWEIN M, EHLERT S, MAUVIEL G, ZIMMERMANN R, DUFOUR A. Fast pyrolysis in a microfluidized bed reactor: effect of biomass properties and operating conditions on volatiles composition as analyzed by online single photoionization mass spectrometry[J]. Energy & Fuels, 2015, 29(11): 7364-7374.
|
[30] |
DUFOUR A, WENG J J, JIA L Y, TANG X F, SIRJEAN B, FOURNET R, Le GALL H, BROSSE N, BILLAUD F, MAUVIEL G, QI F. Revealing the chemistry of biomass pyrolysis by means of tunable synchrotron photoionisation-mass spectrometry[J]. Rsc Advances, 2013, 3(14): 4786-4792.
|