ZHANG Yan, ZHAO Yong-gang, WANG Tong-xing, SHEN Yan, WANG Fan, LU Jie. Study on the Interferences of Adjacent Uranium Particles to Particle Anlysis by Secondary Ion Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(3): 326-333. DOI: 10.7538/zpxb.2020.0065
Citation: ZHANG Yan, ZHAO Yong-gang, WANG Tong-xing, SHEN Yan, WANG Fan, LU Jie. Study on the Interferences of Adjacent Uranium Particles to Particle Anlysis by Secondary Ion Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(3): 326-333. DOI: 10.7538/zpxb.2020.0065

Study on the Interferences of Adjacent Uranium Particles to Particle Anlysis by Secondary Ion Mass Spectrometry

More Information
  • There may be mutual interference between adjacent particles on uranium particle isotope ratios analysis by secondary ion mass spectrometer (SIMS). The influences of distance and measurement order were investigated for U350 and U0002 uranium isotope ratios analysis with IMS-6f SIMS. When the distance was over 22 μm for U350 and 35 μm for U0002 under the conditions of this study, the measured results of 234U/238U, 235U/238U and 236U/238U of particles were in good agreement with the certified value. The poorer particles would be interfered severer than the richer ones under the same distance, and the safe distance is more farther for the poorer particles. The later measured particles would be interfered severer than the former ones when particles were analyzed one by one. The smaller, loser and thinner particles would be interfered severer than the larger and denser ones. Whether the linear combination coefficients of K4(234U/238U)、K5(235U/238U) and K6(236U/238U) values were equal, and could be used to identify “mixed particles”, particle isolation with micro-manipulation was effective for eliminating neighboring particles interference. These results will provide references to adjacent uranium particles analysis by SIMS, so as to discover, handle and eliminate the suspected mixed particle data.
  • [1]
    FISCHER D A V. New directions and tools for strengthening IAEA safeguards[J]. The Nonproliferation Review, 1996, 3: 69-76.
    [2]
    International Atomic Energy Agency. IAEA safeguards glossary[M]. 2001 Edition. Vienna: IAEA, 2002: 72-75.
    [3]
    DONOHUE D, VOGT S, CIURAPINSKI A, RUEDENAUER F, HEDBERG M. Particle analysis of environmental swipe samples[J]. IAEA, IAEA-SM-367/10/07. www-pub.iaea.org.
    [4]
    DONOHUE D L. Strengthened nuclear safeguards[J]. Analytical Chemistry, 2002, 74(1): 29A-35A.
    [5]
    DONOHUE D L. Symposium on international safeguards-preparing for future verification challenges[C]. IAEA. 1 Nov 2010. Vienna. IAEA-CN-184/159.Conference ID: 38095.
    [6]
    TEICHERT Z, BOSE M, WILLIAMS L B. Lithium isotope compositions of U.S. coals and source rocks: potential tracer of hydrocarbons[J]. Chemical Geology, 2020, 549: 119694-119704.
    [7]
    ESAKA F, ESAKA K T, LEE C G, MAGARA M, SAKURAI S, USUDA S, WATANABE K. Particle isolation for analysis of uranium minor isotopes in individual particles by secondary ion mass spectrometry[J] Talanta, 2007, 71(3): 1011-1015.
    [8]
    王同兴,李井怀,张燕,赵永刚,常志远,李少伟,王凡,沈彦. 抽气碰撞法回收擦拭样品上铀微粒方法[J]. 原子能科学技术,2011,45(1):115-119.
    WANG Tongxing, LI Jinghuai, ZHANG Yan, ZHAO Yonggang, CHANG Zhiyuan, LI Shaowei, WANG Fan, SHEN Yan. A method for recovery of uranium particles from wipe samples by suction impact method[J]. Atomic Energy Science and Technology, 2011, 45(1): 115-119(in Chinese).
    [9]
    ESAKA F, WATANABE K, FUKUYAMA H, ONODERA T, ESAKA K T, MAGARA M, SAKURAI S, USUDA S. Efficient isotope ratio analysis of uranium particles in swipe samples by total-reflection X-ray fluorescence spectrometry and secondary ion mass spectrometry[J]. Journal of Nuclear Science and Technology, 2004, 41(11): 1027-1032.
    [10]
    刘国荣,李井怀,李静,郭士伦,王林博,李安利. 微粒定位技术研究[J]. 原子能科学技术,2006,40(4):453-459.
    LIU Guorong, LI Jinghuai, LI Jing, GUO Shilun, WANG Linbo, LI Amway. Research on particle location Technology[J]. Atomic Energy Science and Technology, 2006, 40(4): 453-459(in Chinese).
    [11]
    ESAKA F, WATANABE K, ONODERA T, LEE C G, MAGARA M, SAKURAI S, USUDA S. Dependence of the precision of uranium isotope ratio on particle diameter in individual particle analysis with SIMS[J]. Applied Surface Science, 2008, 255(4): 1512-1515.
  • Cited by

    Periodical cited type(14)

    1. 何佳丽,胡恩明,王纪辉,胡伯凯,刘亚娜. 核桃叶及其乙醇提取物化学成分分析. 食品与机械. 2024(06): 164-169 .
    2. 陈竑瑞,陈昳冰,解天,薛晓娟. 质谱仪在中药研究中的应用现状和趋势. 天津中医药. 2024(08): 1069-1074 .
    3. 张天姣,魏丽超,朱晓慧,夏雯昕,张桂彬,周地,李宁,孙璐. 基于UPLC-Q-TOF/MS技术的白及中菲类化学成分分析. 沈阳药科大学学报. 2024(08): 1026-1038 .
    4. 刘月程,戴衍朋,王变利,丁晓彦,蒋海强,周倩. 基于UPLC-Q-Exactive Orbitrap MS结合诊断离子过滤技术快速分析石榴皮的鞣质类成分. 中华中医药学刊. 2023(05): 71-79 .
    5. 刘月程,耿雪,蒋海强,周倩. 基于UPLC-Q-Exactive Orbitrap MS结合分子网络的炮制前后石榴皮化学成分分析. 中药材. 2023(02): 338-348 .
    6. 李兆慧,师砚首,喻晓雁,陈云,王强,阮洪生. 三叶青黄酮的提取工艺优化及抗氧化活性分析. 中南药学. 2023(08): 2035-2040 .
    7. 沈佳琪,梁力文,刘小康,葛威,蔡广知,郭云龙,贡济宇. 基于UHPLC-Q-Orbitrap/MS表征竹叶石膏汤物质基准化学成分. 质谱学报. 2023(05): 614-623 . 本站查看
    8. 朱思蓓,聂晶,李春霖,邵圣枝,张永志,袁玉伟,陶益,王钫. 三叶青品质评价与产地鉴别技术研究进展. 浙江农业科学. 2023(10): 2355-2361 .
    9. 邱海玲,王方明,米芯雨,张泽坤,杜宇,史社坡,王晓晖,屠鹏飞. 管花肉苁蓉花中查耳酮合酶的基因克隆、功能鉴定与表达分析. 中草药. 2023(23): 7797-7805 .
    10. 刘俊秋,高语枫,郑佳怡,周瑜城,施广义,张轲杰,刘娜,开国银. 三叶青化学成分及其抗肿瘤作用研究进展. 中国实验方剂学杂志. 2022(09): 233-241 .
    11. 刘月程,田振华. 超高效液相色谱–四级杆静电场轨道阱质谱法快速鉴定柴胡化学成分. 化学分析计量. 2022(08): 5-12 .
    12. 崔小敏,何芳,晋玥媞,任慧,胡静,曲彤,李宁,陈志永. 正心降脂片HPLC指纹图谱构建与共有峰高分辨质谱分析. 药物分析杂志. 2022(08): 1440-1447 .
    13. 丁宁,海燕,王晓晖,屠鹏飞,高博闻,史社坡. 白木香查尔酮异构酶基因的克隆鉴定与表达分析. 药学学报. 2021(02): 630-638 .
    14. 秦伟瀚,阳勇,李卿,刘翔. 基于高分辨质谱法的淫羊藿特征药效黄酮质谱裂解规律及新化合物鉴定研究. 天然产物研究与开发. 2021(09): 1478-1490 .

    Other cited types(6)

Catalog

    Article views (669) PDF downloads (354) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return