Citation: | ZHANG Teng-fei, WEN Ming, HUANG Long-cheng, FENG Gao-ping, WANG Dian-kai, WEI Kang. Determination of O3 and N2O Components in Atmospheric Pressure Dielectric Barrier Discharge Plasma Based on Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2023, 44(3): 452-460. DOI: 10.7538/zpxb.2022.0064 |
[1] |
陈波. 大气压脉冲介质阻挡放电特性及放电参数效应研究[D]. 济南:山东大学,2013.
|
[2] |
KOGELSCHATZ U. Dielectric-barrier discharges: their history, discharge physics, and industrial application[J]. Plasma Chemistry and Plasma Processing, 2003, 23: 1-6.
|
[3] |
易志健,卿泽旭,王殿恺,江敏,王永刚,黄逸凡. 低温等离子体降解偏二甲肼废水研究[J]. 集成技术,2019,8(6):65-74.
YI Zhijian, QING Zexu, WANG Diankai, JIANG Min, WANG Yonggang, HUANG Yifan. A study on degradation of unsym-dimethylhydrazine waste liquid by low temperature plasma[J]. Journal of Integration Technology, 2019, 8(6): 65-74(in Chinese). |
[4] |
方小军,侯瑞琴,张志仁. 低温等离子技术在推进剂废水处理中的应用前景[J]. 给水排水技术动态,2004(1):16-19.
FANG Xiaojun, HOU Ruiqin, ZHANG Zhiren. Application prospect of low temperature plasma technology in the treatment of propellant wastewater[J]. Water & Wastewater Information, 2004(1): 16-19(in Chinese). |
[5] |
马可可,周律,辛怡颖,白昱. 低温等离子体技术用于废水处理的研究进展[J]. 应用化工,2019,48(1):145-150.
MA Keke, ZHOU LV, XIN Yiying, BAI Yu. Research progress in application of low temperature plasma technology for wastewater treatment[J]. Applied Chemical Industry, 2019, 48(1): 145-150(in Chinese). |
[6] |
GLAZE W H. Drinking-water treatment with ozone[J]. Environmental Science & Technology, 1987, 21(3): 224.
|
[7] |
GOTT R P, MILLER S D, HODGES J C, XU K G. Plasma-based water purification for crewed space missions: laboratory experimental comparisons for on-board applicability[J]. Advances in Space Research, 2021, 68(3): 1591-1600.
|
[8] |
DI L, ZHANG J, ZHANG X. A review on the recent progress, challenges, and perspectives of atmospheric-pressure cold plasma for preparation of supported metal catalysts[J]. Plasma Processes and Polymers, 2018, 15: 1 700 234.
|
[9] |
ZHANG C, MA Y Y, KONG F, WANG R X, REN C Y, SHAO T . Surface charge decay of epoxy resin treated by AP-DBD deposition and direct fluorination[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(3): 768-775.
|
[10] |
FANG Z, WANG X, SHAO T, ZHANG C. Influence of oxygen content on argon/oxygen dielectric barrier discharge plasma treatment of polyethylene terephthalate film[J]. IEEE Transactions on Plasma Science, 2017, 45(2): 310-317.
|
[11] |
PASCUAL A, LLORCA I, CANUT A. Use of ozone in food industries for reducing the environmental impact of cleaning and disinfection activities[J]. Trends in Food Science & Technology, 2007, 18: 29-35.
|
[12] |
IVANOV M, PAVII T V, KRALJI K, GRGAS D, DRAGIEVI T L, HERCEG Z. Effects of high voltage electrical discharge plasma on olive mill wastewater treatment[J]. Sustainability, 2021, 13: 1552.
|
[13] |
LOBNA M, CHEDLY T, SVEN-UWE G, LATIFA B. A comparative study on ozone, hydrogen peroxide and UV based advanced oxidation processes for efficient removal of diethyl phthalate in water[J]. Journal of Hazardous Materials, 2019, 363: 401-411.
|
[14] |
ASHFORD B, TU X. Non-thermal plasma technology for the conversion of CO2[J]. Current Opinion in Green Sustainable Chemistry, 2017, 3: 45-49.
|
[15] |
SAOUD W A, ASSADI A A, GUIZA M, LOGANATHAN S, BOUZAZA A, ABOUSSAOUD W, OUEDERNI A, RTIMI S, WOLBERT D. Synergism between non-thermal plasma and photocatalysis: implicationsin the post discharge of ozone at a pilot scale in a catalytic fixed-bed reactor[J]. Applied Catalysis B: Environmental, 2019, 241: 227-235.
|
[16] |
CATTO A C, OLIVEIRA M C, RIBEIRO R A P, AVANSI W, LONGO E. Hematite rhombuses for chemiresitive ozone sensors: experimental and theoretical approaches[J]. Applied Surface Science, 2021, 563: 150 209.
|
[17] |
高坤,弓丹丹,刘仁静,苏泽华,贾鹏英,李雪辰. 吸收光谱法测量大气压空气介质阻挡放电的臭氧浓度[J]. 光谱学与光谱分析,2020,40:461-464.
GAO Kun, GONG Dandan, LIU Renjing, SU Zehua, JIA Pengying, LI Xuechen. Measurement of ozone concentration in atmospheric pressure air barrier discharge by optical absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 2020, 40: 461-464(in Chinese). |
[18] |
ENGELN R, KLARENAAR B, GUAITELLA O. Foundations of optical diagnostics in low-temperature plasmas[J]. Plasma Sources Science and Technology, 2020, 29(6): 1-14.
|
[19] |
王照奎. 射频辉光放电等离子体空间特性的质谱诊断[D]. 广州:汕头大学,2005.
|
[20] |
GROSSEKREUL S, HUBNER S, SCHNEIDER S, ELLERWEG D, KEUDELL A, MATEJCIK S, BENEDIKT J. Mass spectrometry of atmospheric pressure plasmas[J]. Plasma Sources Science and Technology, 2015, 376: 39-45.
|
[21] |
袁定琨. 介质阻挡放电活性分子臭氧发生的基础特性研究[D]. 杭州:浙江大学,2019.
|
[22] |
叶超. 低温等离子体诊断原理与技术[M]. 北京:科学出版社,2021.
|
[23] |
郝世强. 介质阻挡放电的能量压缩机理、实现及优化[D]. 杭州:浙江大学,2016.
|