Citation: | TAN Cong-rui, XU Wei. Recent Advances of Native Mass Spectrometry Techniques[J]. Journal of Chinese Mass Spectrometry Society, 2022, 43(6): 754-767. DOI: 10.7538/zpxb.2022.0066 |
[1] |
ROBINSON C V, SALI A, BAUMEISTER W. The molecular sociology of the cell[J]. Nature, 2007, 450(7 172): 973-982.
|
[2] |
SEYCHELL B C, BECK T. Molecular basis for protein-protein interactions[J]. Beilstein Journal of Organic Chemistry, 2021, 17: 1-10.
|
[3] |
VELAZQUEZ-CAMPOY A, LEAVITT S A, FREIRE E. Characterization of protein-protein interactions by isothermal titration calorimetry[M]. New York, Springer, 2015: 183-204.
|
[4] |
LOO J A, LOO R R O, UDSETH H R, EDMONDS C G, SMITH R D. Solvent-induced conformational changes of polypeptides probed by electrospray-ionization mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 1991, 5(3): 101-105.
|
[5] |
ZHOU M, SANDERCOCK A M, FRASER C S, RIDLOVA G, STEPHENS E, SCHENAUER M R, YOKOI-FONG T, BARSKY D, LEARY J A, HERSHEY J W, DOUDNA J A, ROBINSON C V. Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eif3[J]. Proceedings of the National Academy of Sciences, 2008, 105(47): 18139-18144.
|
[6] |
RUOTOLO B T, GILES K, CAMPUZANO I, SANDERCOCK A M, BATEMAN R H, ROBINSON C V. Evidence for macromolecular protein rings in the absence of bulk water[J]. Science, 2005, 310(5 754): 1658-1661.
|
[7] |
AQUILINA J A, BENESCH J L P, BATEMAN O A, SLINGSBY C, ROBINSON C V. Polydispersity of a mammalian chaperone: mass spectrometry reveals the population of oligomers in αbcrystallin[J]. Proceedings of the National Academy of Sciences, 2003, 100(19): 10611-10 616.
|
[8] |
van DUIJN E, SIMMONS D A, van DEN HEUVEL R H H, BAKKES P J, van HEERIKHUIZEN H, HEEREN R M A, ROBINSON C V, van der VIES S M, HECK A J R. Tandem mass spectrometry of intact groel-substrate complexes reveals substrate-specific conformational changes in the trans ring[J]. Journal of the American Chemical Society, 2006, 128(14): 4694-4702.
|
[9] |
BENNETT J L, NGUYEN G T H, DONALD W A. Protein-small molecule interactions in native mass spectrometry[J]. Chemical Reviews, 2022, 122(8): 7327-7385.
|
[10] |
BOLLA J R, FIORENTINO F, ROBINSON C V. Mass spectrometry informs the structure and dynamics of membrane proteins involved in lipid and drug transport[J]. Current Opinion in Structural Biology, 2021, 70: 53-60.
|
[11] |
RICHARDS A L, ECKHARDT M, KROGAN N J. Mass spectrometry-based protein-protein interaction networks for the study of human diseases[J]. Molecular Systems Biology, 2021, 17(1): e8792.
|
[12] |
HERNNDEZ H, ROBINSON C V. Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry[J]. Nature Protocols, 2007, 2(3): 715-726.
|
[13] |
PAN P, MCLUCKEY S A. The effect of small cations on the positive electrospray responses of proteins at low pH[J]. Analytical Chemistry, 2003, 75(20): 5468-5474.
|
[14] |
VERKERK U H, KEBARLE P. Ionion and ionmolecule reactions at the surface of proteins produced by nanospray. Information on the number of acidic residues and control of the number of ionized acidic and basic residues[J]. Journal of the American Society for Mass Spectrometry, 2005, 16(8): 1325-1341.
|
[15] |
DESLIGNIRE E, LEY M, BOURGUET M, EHKIRCH A, BOTZANOWSKI T, ERB S, HERNANDEZ-ALBA O, CIANFéRANI S. Pushing the limits of native MS: online sec-native MS for structural biology applications[J]. International Journal of Mass Spectrometry, 2021, 461: 116 502.
|
[16] |
WEI B, HAN G, TANG J, SANDOVAL W, ZHANG Y T. Native hydrophobic interaction chromatography hyphenated to mass spectrometry for characterization of monoclonal antibody minor variants[J]. Analytical Chemistry, 2019, 91(24): 15360-15364.
|
[17] |
VIMER S, BENNISSAN G, SHARON M. Direct characterization of overproduced proteins by native mass spectrometry[J]. Nature Protocols, 2020, 15(2): 236-265.
|
[18] |
LI G, YUAN S, ZHENG S, LIU Y, HUANG G. In situ living cell protein analysis by singlestep mass spectrometry[J]. Analytical Chemistry, 2018, 90(5): 3409-3415.
|
[19] |
CHEN Y, LI G, YUAN S, PAN Y, LIU Y, HUANG G. Ultrafast microelectrophoresis: behind direct mass spectrometry measurements of proteins and metabolites in living cell/cells[J]. Analytical Chemistry, 2019, 91(16): 10441-10447.
|
[20] |
WEI Z, HAN S, GONG X, ZHAO Y, YANG C, ZHANG S, ZHANG X. Rapid removal of matrices from smallvolume samples by step-voltage nanoelectrospray[J]. Angewandte Chemie International Edition, 2013, 52(42): 11025-11028.
|
[21] |
FENN J B, MANN M, MENG C K, WONG S F, WHITEHOUSE C M. Electrospray ionization for mass spectrometry of large biomolecules[J]. Science, 1989, 246(4 926): 64-71.
|
[22] |
WILM M, MANN M. Analytical properties of the nanoelectrospray ion source[J]. Analytical Chemistry, 1996, 68(1): 1-8.
|
[23] |
WILM M S, MANN M. Electrospray and taylorcone theory, dole′s beam of macromolecules at last?[J]. International Journal of Mass Spectrometry and Ion Processes, 1994, 136(2): 167-180.
|
[24] |
HU J, GUAN Q Y, WANG J, JIANG X X, WU Z Q, XIA X H, XU J J, CHEN H Y. Effect of nanoemitters on suppressing the formation of metal adduct ions in electrospray ionization mass spectrometry[J]. Analytical Chemistry, 2017, 89(3): 1838-1845.
|
[25] |
SUSA A C, XIA Z, WILLIAMS E R. Native mass spectrometry from common buffers with salts that mimic the extracellular environment[J]. Angewandte Chemie International Edition, 2017, 56(27): 7912-7915.
|
[26] |
SUSA A C, XIA Z, WILLIAMS E R. Small emitter tips for native mass spectrometry of proteins and protein complexes from nonvolatile buffers that mimic the intracellular environment[J]. Analytical Chemistry, 2017, 89(5): 3116-3122.
|
[27] |
SUSA A C, LIPPENS J L, XIA Z, LOO J A, CAMPUZANO I D G, WILLIAMS E R. Submicrometer emitter ESI tips for native mass spectrometry of membrane proteins in ionic and nonionic detergents[J]. Journal of the American Society for Mass Spectrometry, 2018, 29(1): 203-206.
|
[28] |
TAKTS Z, WISEMAN JUSTIN M, GOLOGAN B, COOKS R G. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization[J]. Science, 2004, 306(5 695): 471-473.
|
[29] |
IFA D R, WU C, OUYANG Z, COOKS R G. Desorption electrospray ionization and other ambient ionization methods: current progress and preview[J]. Analyst, 2010, 135(4): 669-681.
|
[30] |
EBERLIN L S, FERREIRA C R, DILL A L, IFA D R, COOKS R G. Desorption electrospray ionization mass spectrometry for lipid characterization and biological tissue imaging[J]. Biochimica et Biophysica Acta, 2011, 1811(11): 946-960.
|
[31] |
AMBROSE S, HOUSDEN N G, GUPTA K, FAN J, WHITE P, YEN H Y, MARCOUX J, KLEANTHOUS C, HOPPER J T S, ROBINSON C V. Native desorption electrospray ionization liberates soluble and membrane protein complexes from surfaces[J]. Angewandte Chemie International Edition, 2017, 56(46): 14463-14468.
|
[32] |
HALE O J, COOPER H J. Native mass spectrometry imaging of proteins and protein complexes by nano-DESI[J]. Analytical Chemistry, 2021, 93(10): 4619-4627.
|
[33] |
ALEXANDER HARRISON J, PRUKA A, OGANESYAN I, BITTNER P, ZENOBI R. Temperature-controlled electrospray ionization: recent progress and applications[J]. Chemistry-A European Journal, 2021, 27(72): 18015-18028.
|
[34] |
BENESCH J L P, SOBOTT F, ROBINSON C V. Thermal dissociation of multimeric protein complexes by using nanoelectrospray mass spec-trometry[J]. Analytical Chemistry, 2003, 75(10): 2208-2214.
|
[35] |
WANG G, ABZALIMOV R R, KALTASHOV I A. Direct monitoring of heat-stressed biopolymers with temperature-controlled electrospray ionization mass spectrometry[J]. Analytical Chemistry, 2011, 83(8): 2870-2876.
|
[36] |
YAMAGUCHI K. Cold-spray ionization mass spectrometry: principle and applications[J]. Journal of Mass Spectrometry, 2003, 38(5): 473-490.
|
[37] |
RAHMAN M M, MANDAL M K, HIRAOKA K, CHEN L C. High pressure nanoelectrospray ionization mass spectrometry for analysis of aqueous solutions[J]. Analyst, 2013, 138(21): 6316-6322.
|
[38] |
MARCHAND A, CZAR M F, EGGEL E N, KAESLIN J, ZENOBI R. Studying biomolecular folding and binding using temperature-jump mass spectrometry[J]. Nature Communications, 2020, 11(1): 566.
|
[39] |
MCCABE J W, SHIRZADEH M, WALKER T E, LIN C W, JONES B J, WYSOCKI V H, BARONDEAU D P, CLEMMER D E, LAGANOWSKY A, RUSSELL D H. Variable-temperature electrospray ionization for temperature-dependent folding/refolding reactions of proteins and ligand binding[J]. Analytical Chemistry, 2021, 93(18): 6924-6931.
|
[40] |
SOBOTT F, HERN-NDEZ H, MCCAMMON M G, TITO M A, ROBINSON C V. A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies[J]. Analytical Chemistry, 2002, 74(6): 1402-1407.
|
[41] |
BARTH M, SCHMIDT C. Native mass spectrometry-a valuable tool in structural biology[J]. J Mass Spectrom, 2020, 55(10): e4578.
|
[42] |
ROSE R J, DAMOC E, DENISOV E, MAKAROV A, HECK A J R. High-sensitivity orbitrap mass analysis of intact macromolecular assemblies[J]. Nature Methods, 2012, 9(11): 1084-1086.
|
[43] |
GAULT J, DONLAN J A C, LIKO I, HOPPER J T S, GUPTA K, HOUSDEN N G, STRUWE W B, MARTY M T, MIZE T, BECHARA C, ZHU Y, WU B, KLEANTHOUS C, BELOV M, DAMOC E, MAKAROV A, ROBINSON C V. Highresolution mass spectrometry of small molecules bound to membrane proteins[J]. Nature Methods, 2016, 13(4): 333-336.
|
[44] |
van de WATERBEEMD M, FORT K L, BOLL D, REINHARDT-SZYBA M, ROUTH A, MAKAROV A, HECK A J R. High-fidelity mass analysis unveils heterogeneity in intact ribosomal particles[J]. Nature Methods, 2017, 14(3): 283-286.
|
[45] |
MITCHELL WELLS J, MCLUCKEY S A. Collisioninduced dissociation (CID) of peptides and proteins[M]. Academic Press, 2005: 148-185.
|
[46] |
BRODBELT J S. Ion activation methods for peptides and proteins[J]. Analytical Chemistry, 2016, 88(1): 30-51.
|
[47] |
SEVER A I M, YIN V, KONERMANN L. Interrogating the quaternary structure of noncanonical hemoglobin complexes by electrospray mass spectrometry and collision-induced disso-ciation[J]. Journal of the American Society for Mass Spectrometry, 2021, 32(1): 270-280.
|
[48] |
HARVEY S R, SEFFERNICK J T, QUINTYN R S, SONG Y, JU Y, YAN J, SAHASRABUDDHE A N, NORRIS A, ZHOU M, BEHRMAN E J, LINDERT S, WYSOCKI V H. Relative interfacial cleavage energetics of protein complexes revealed by surface collisions[J]. Proceedings of the National Academy of Sciences, 2019, 116(17): 8143-8148.
|
[49] |
ZHOU Y, DONG J W, VACHET R. Electron transfer dissociation of modified peptides and proteins[J]. Current Pharmaceutical Biotechnology, 2011, 12(10): 1558-1567.
|
[50] |
MADSEN J A, BOUTZ D R, BRODBELT J S. Ultrafast ultraviolet photodissociation at 193 nm and its applicability to proteomic workflows[J]. Journal of Proteome Research, 2010, 9(8): 4205-4214.
|
[51] |
MACIAS L A, SANTOS I C, BRODBELT J S. Ion activation methods for peptides and proteins[J]. Analytical Chemistry, 2020, 92(1): 227-251.
|
[52] |
LANUCARA F, HOLMAN S W, GRAY C J, EYERS C E. The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics[J]. Nature Chemistry, 2014, 6(4): 281-294.
|
[53] |
UETRECHT C, ROSE R J, van DUIJN E, LORENZEN K, HECK A J R. Ion mobility mass spectrometry of proteins and protein assemblies[J]. Chemical Society Reviews, 2010, 39(5): 1633-1655.
|
[54] |
UETRECHT C, VERSLUIS C, WATTS N R, WINGFIELD P T, STEVEN A C, HECK A J R. Stability and shape of hepatitis b virus capsids in vacuo[J]. Angewandte Chemie International Edition, 2008, 47(33): 6247-6251.
|
[55] |
DODDS J N, BAKER E S. Ion mobility spectrometry: fundamental concepts, instrumentation, applications, and the road ahead[J]. Journal of the American Society for Mass Spectrometry, 2019, 30(11): 2185-2195.
|
[56] |
POLITIS A, PARK A Y, HALL Z, RUOTOLO B T, ROBINSON C V. Integrative modelling coupled with ion mobility mass spectrometry reveals structural features of the clamp loader in complex with single-stranded DNA binding protein[J]. Journal of Molecular Biology, 2013, 425(23): 4790-4801.
|
[57] |
ZHONG Y, HAN L, RUOTOLO B T. Collisional and coulombic unfolding of gas-phase proteins: high correlation to their domain structures in solution[J]. Angewandte Chemie International Edition, 2014, 53(35): 9209-9212.
|
[58] |
LI G, PHETSANTHAD A, MA M, YU Q, NAIR A, ZHENG Z, MA F, DELANEY K, HONG S, LI L. Native ion mobility-mass spectrometry-enabled fast structural interrogation of labile protein surface modifications at the intact protein level[J]. Analytical Chemistry, 2022, 94(4): 2142-2153.
|
[59] |
HYUNG S J, ROBINSON C V, RUOTOLO B T. Gas-phase unfolding and disassembly reveals stability differences in ligand-bound multiprotein complexes[J]. Chemistry & Biology, 2009, 16(4): 382-390.
|
[60] |
LAGANOWSKY A, READING E, ALLISON T M, ULMSCHNEIDER M B, DEGIACOMI M T, BALDWIN A J, ROBINSON C V. Membrane proteins bind lipids selectively to modulate their structure and function[J]. Nature, 2014, 510(7 503): 172-175.
|
[61] |
GADKARI V V, RAMREZ C R, VALLEJO D D, KURULUGAMA R T, FJELDSTED J C, RUOTOLO B T. Enhanced collision induced unfolding and electron capture dissociation of native-like protein ions[J]. Analytical Chemistry, 2020, 92(23): 15489-15496.
|
[62] |
JEANNE DIT FOUQUE K, GARABEDIAN A, LENG F, TSEDINH Y C, RIDGEWAY M E, PARK M A, FERNANDEZ-LIMA F. Trapped ion mobility spectrometry of native macromolecular assemblies[J]. Analytical Chemistry, 2021, 93(5): 2933-2941.
|
[63] |
MORTENSEN D N, SUSA A C, WILLIAMS E R. Collisional cross-sections with T-wave ion mobility spectrometry without experimental calibration[J]. Journal of the American Society for Mass Spectrometry, 2017, 28(7): 1282-1292.
|
[64] |
STIVING A Q, JONES B J, UJMA J, GILES K, WYSOCKI V H. Collision cross sections of charge-reduced proteins and protein complexes: a database for collision cross section calibration[J]. Analytical Chemistry, 2020, 92(6): 4475-4483.
|
[65] |
FRANCE A P, MIGAS L G, SINCLAIR E, BELLINA B, BARRAN P E. Using collision cross section distributions to assess the distribution of collision cross section values[J]. Analytical Chemistry, 2020, 92(6): 4340-4348.
|
[66] |
STOW S M, CAUSON T J, ZHENG X, KURULUGAMA R T, MAIRINGER T, MAY J C, RENNIE E E, BAKER E S, SMITH R D, MCLEAN J A, HANN S, FJELDSTED J C. An interlaboratory evaluation of drift tube ion mobility-mass spectrometry collision cross section measurements[J]. Analytical Chemistry, 2017, 89(17): 9048-9055.
|
[67] |
YEFREMOVA Y, OPUNI K F M, DANQUAH B D, THIESEN H J, GLOCKER M O. Intact transition epitope mapping (ITEM)[J]. Journal of the American Society for Mass Spectrometry, 2017, 28(8): 1612-1622.
|
[68] |
BLEIHOLDER C, DUPUIS N F, WYTTENBACH T, BOWERS M T. Ion mobility-mass spectrometry reveals a conformational conversion from random assembly to β-sheet in amyloid fibril formation[J]. Nature Chemistry, 2011, 3(2): 172-177.
|
[69] |
MAXWELL E J, ZHONG X, ZHANG H, van ZEIJL N, CHEN D D Y. Decoupling CE and ESI for a more robust interface with MS[J]. Electrophoresis, 2010, 31(7): 1130-1137.
|
[70] |
SMITH R D, BARINAGA C J, UDSETH H R. Improved electrospray ionization interface for capillary zone electrophoresismass spectrometry[J]. Analytical Chemistry, 1988, 60(18): 1948-1952.
|
[71] |
WOJCIK R, DADA O O, SADILEK M, DOVICHI N J. Simplified capillary electrophoresis nanospray sheath-flow interface for high efficiency and sensitive peptide analysis[J]. Rapid Communications in Mass Spectrometry, 2010, 24(17): 2554-2560.
|
[72] |
BELOV A M, VINER R, SANTOS M R, HORN D M, BERN M, KARGER B L, IVANOV A R. Analysis of proteins, protein complexes, and organellar proteomes using sheathless capillary zone electrophoresis-native mass spectrometry[J]. Journal of the American Society for Mass Spectrometry, 2017, 28(12): 2614-2634.
|
[73] |
JORGENSON J W, LUKACS K D. Capillary zone electrophoresis[J]. Science, 1983, 222(4 621): 266-272.
|
[74] |
KALTASHOV I A, MOHIMEN A. Estimates of protein surface areas in solution by electrospray ionization mass spectrometry[J]. Analytical Chemistry, 2005, 77(16): 5370-5379.
|
[75] |
NATALELLO A, SANTAMBROGIO C, GRANDORI R. Are charge-state distributions a reliable tool describing molecular ensembles of intrinsically disordered proteins by native MS?[J]. Journal of the American Society for Mass Spectrometry, 2017, 28(1): 21-28.
|
[76] |
HE T, CHANDRAMOULI N, FU E, WU A, WANG Y K. Analysis of reduced and oxidized forms of cytochrome c by capillary electrophoresis and capillary electrophoresis-mass spectrometry[J]. Analytical Biochemistry, 1999, 271(2): 189-192.
|
[77] |
MARIE A L, DOMINGUEZ-VEGA E, SALLER F, PLANTIER J L, URBAIN R, BORGEL D, TRAN N T, SOMSEN G W, TAVERNA M. Characterization of conformers and dimers of antithrombin by capillary electrophoresis-quadrupole-time-of-flight mass spectrometry[J]. Analytica Chimica Acta, 2016, 947: 58-65.
|
[78] |
LEMINH V, TRAN N T, MAKKY A, ROSILIO V, TAVERNA M, SMADJA C. Capillary zone electrophoresis-native mass spectrometry for the quality control of intact therapeutic monoclonal antibodies[J]. Journal of Chromatography A, 2019, 1 601: 375-384.
|
[79] |
DADA O O, ZHAO Y, JAYA N, SALASSOLANO O. High-resolution capillary zone electrophoresis with mass spectrometry peptide mapping of therapeutic proteins: peptide recovery and post-translational modification analysis in monoclonal antibodies and antibody-drug conjugates[J]. Analytical Chemistry, 2017, 89(21): 11236-11242.
|
[80] |
SHEN X, LIANG Z, XU T, YANG Z, WANG Q, CHEN D, PHAM L, DU W, SUN L. Investigating native capillary zone electrophoresis-mass spectrometry on a high-end quadrupole-time-of-flight mass spectrometer for the characterization of monoclonal antibodies[J]. International Journal of Mass Spectrometry, 2021, 462: 116 541.
|
[81] |
JOO K, MCGEE J P, MELANI R D, KELLEHER N L. Standard procedures for native CZE-MS of proteins and protein complexes up to 800 kda[J]. Electrophoresis, 2021, 42(9/10): 1050-1059.
|
[82] |
WU H, ZHANG R, ZHANG W, HONG J, XIANG Y, XU W. Rapid 3-dimensional shape determination of globular proteins by mobility capillary electrophoresis and native mass spectrometry[J]. Chemical Science, 2020, 11(18): 4758-4765.
|
[83] |
ZHANG W, WU H, ZHANG R, FANG X, XU W. Structure and effective charge characterization of proteins by a mobility capillary electrophoresis based method[J]. Chemical Science, 2019, 10(33): 7779-7787.
|
[84] |
HE M, LUO P, HONG J, WANG X, WU H, ZHANG R, QU F, XIANG Y, XU W. Structural analysis of biomolecules through a combination of mobility capillary electrophoresis and mass spectrometry[J]. ACS Omega, 2019, 4(1): 2377-2386.
|
[85] |
ZHANG R, WU H, HE M, ZHANG W, XU W. Mobility capillary electrophoresis-restrained modeling method for protein structure analysis in mixtures[J]. The Journal of Physical Chemistry B, 2019, 123(10): 2335-2341.
|
[86] |
CHU Y H, WHITESIDES G M. Affinity capillary electrophoresis can simultaneously measure binding constants of multiple peptides to vancomycin[J]. The Journal of Organic Chemistry, 1992, 57(13): 3524-3525.
|
[87] |
DUBSK P, DVORˇK M, ANSORGE M. Affinity capillary electrophoresis: the theory of electromigration[J]. Analytical and Bioanalytical Chemistry, 2016, 408(30): 8623-8641.
|
[88] |
WANG Y, ADEOYE D I, OGUNKUNLE E O, WEI I A, FILLA R T, ROPER M G. Affinity capillary electrophoresis: a critical review of the literature from 2018 to 2020[J]. Analytical Chemistry, 2021, 93(1): 295-310.
|
[89] |
HONG J, WU H, ZHANG R, HE M, XU W. The coupling of taylor dispersion analysis and mass spectrometry to differentiate protein conformations[J]. Analytical Chemistry, 2020, 92(7): 5200-5206.
|
[90] |
ALOY P, BTTCHER B, CEULEMANS H, LEUTWEIN C, MELLWIG C, FISCHER S, GAVIN A C, BORK P, SUPERTIFURGA G, SERRANO L, RUSSELL ROBERT B. Structurebased assembly of protein complexes in yeast[J]. Science, 2004, 303(5 666): 2026-2029.
|
[91] |
LORENZEN K, OLIA A S, UETRECHT C, CINGOLANI G, HECK A J R. Determination of stoichiometry and conformational changes in the first step of the p22 tail assembly[J]. Journal of Molecular Biology, 2008, 379(2): 385-396.
|
[92] |
AGASID M T, SRENSEN L, URNER L H, YAN J, ROBINSON C V. The effects of sodium ions on ligand binding and conformational states of G protein-coupled receptors-insights from mass spectrometry[J]. Journal of the American Chemical Society, 2021, 143(11): 4085-4089.
|