HUANG Qi, REN Yi, CHEN Zheng-ge, CHEN Jian-song, HONG Yi, LIANG Xin, LI Mei, HUANG Zheng-xu, ZHOU Zhen. Voltage Optimization of Multiple Reflection Time of Flight Mass Analyzer Based on Particle Swarm Optimization Algorithm[J]. Journal of Chinese Mass Spectrometry Society, 2023, 44(5): 667-675. DOI: 10.7538/zpxb.2023.0024
Citation: HUANG Qi, REN Yi, CHEN Zheng-ge, CHEN Jian-song, HONG Yi, LIANG Xin, LI Mei, HUANG Zheng-xu, ZHOU Zhen. Voltage Optimization of Multiple Reflection Time of Flight Mass Analyzer Based on Particle Swarm Optimization Algorithm[J]. Journal of Chinese Mass Spectrometry Society, 2023, 44(5): 667-675. DOI: 10.7538/zpxb.2023.0024

Voltage Optimization of Multiple Reflection Time of Flight Mass Analyzer Based on Particle Swarm Optimization Algorithm

More Information
  • Time-of-flight mass spectrometry is a commonly mass spectrometry technique that is widely used in biomedicine, environmental science and food science. The multiple reflection time-of-flight (MR-TOF) mass analyzer is a new type of mass analyzer with ultra-high mass resolution and has been used at institutions, such as Helmholtz Centre for Heavy Ion Research (GSI), European Organization for Nuclear Research (CERN) and High Energy Accelerator Research Organization (KEK) to measure short-lived ion masses, separate isobar and store ions. As the demand for use increasing, it is becoming important to improve the resolving power of MR-TOF mass analyzers. However, the optimization of the voltage parameters of MR-TOF mass analyzers is a high-dimensional, highly refined and non-linear problem, which is difficult to solve optimally by analytical method. In this study, a particle swarm optimization (PSO) algorithm-based method for optimizing the voltage parameters of MR-TOF mass analyzers was proposed. The method used an improved particle swarm optimization (IPSO) approach with a inertia weight decay strategy. The optimization method was tested on the SIMION ion optics simulation platform. Considering 133Cs+ ion with E=1.5 keV, δE=8.5 eV, δx=δy=1 mm, δα=δβ=1.5 mrad, a mass resolving power over 8.1×105 was achieved when Δt=0 ns and a mass resolving power over 5.0×105 was achieved when Δt=20 ns. IPSO optimized the best results to achieve the 2nd order focus of time with respect to energy for the MR-TOF mass analyzer, and the deviation of the ion′s half-turn time of flight was within 1.3×10-6. In 20 times experiments, IPSO improved the maximum results by 33%, the average results by 35% and the standard deviation by 29% compared with PSO optimization, providing better solution quality and stability. IPSO′s linear decay strategy effectively controlled the reduction of the voltage update step size and was able to meet the global search and refinement of the MR-TOF mass analyzer voltage parameter optimization problem. It had good convergence and convergence speed. This work provided a fast and effective method for optimizing the voltage parameters of the MR-TOF mass analyzer and helped to improve the performance of this analyzer. The results showed that the IPSO is able to obtain a limiting mass resolution of more than 810 000, which has better performance compared with the PSO. The method has the advantages of simple operation, fast optimization and better solution, which can provide a method reference for voltage optimization of MR-TOF mass analyzer and thus improve the development efficiency of MR-TOF mass analyzer.
  • [1]
    RADIONOVA A, FILIPPOV I, DERRICK P J. In pursuit of resolution in time-of-flight mass spectrometry: a historical perspective: in pursuit of resolution in tof mass spectrometry[J]. Mass Spectrometry Reviews, 2016, 35(6): 738-757.
    [2]
    BOESL U. Time-of-flight mass spectrometry: introduction to the basics: time-of-flight mass spectrometry[J]. Mass Spectrometry Reviews, 2017, 36(1): 86-109.
    [3]
    黄建鹏,贺玖明,朱辉,李铁钢,黄正旭,莫婷,李梅. 国产高分辨飞行时间质谱仪在药物分子结构鉴定中的应用[J]. 质谱学报,2016,37(5):431-439.
    HUANG Jianpeng, HE Jiuming, ZHU Hui, LI Tiegang, HUANG Zhengxu, MO Ting, LI Mei. Analysis of pharmaceutical molecules for structure identification by domestic high resolution time-of-flight mass spectrometer[J]. Journal of Chinese Mass Spectrometry Society, 2016, 37(5): 431-439(in Chinese).
    [4]
    解迎双,张欢,王娟,王波. 实时直接分析-串联质谱法快速测定环境水体中涕灭威及其代谢物[J]. 质谱学报,2022,43(1):99-108.
    XIE Yingshuang, ZHANG Huan, WANG Juan, WANG Bo. Rapid determination of aldicarb and its metabolites in water environment by real-time direct analysis-tandem mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2022, 43(1): 99-108(in Chinese).
    [5]
    林黛琴,万承波,邱萍,刘花梅. 液相色谱-串联质谱法快速测定食品中4种黄色工业染料[J]. 质谱学报,2013,34(3):170-178.
    LIN Daiqin, WAN Chengbo, QIU Ping, LIU Huamei. Rapid determination of four high yellow dyes in foods by HPLC-MS/MS[J]. Journal of Chinese Mass Spectrometry Society, 2013, 34(3): 170-178(in Chinese).
    [6]
    WOLLNIK H, CASARES A. An energy-isochronous multi-pass time-of-flight mass spectrometer consisting of two coaxial electrostatic mirrors[J]. International Journal of Mass Spectrometry, 2003, 227(2): 217-222.
    [7]
    PLAβ W R, DICKEL T, SCHEIDENBERGER C. Multiple-reflection time-of-flight mass spectrometry[J]. International Journal of Mass Spectrometry, 2013(349/350): 134-144.
    [8]
    DICKEL T, PLAβ W R, BECKER A, CZOK U, GEISSEL H, HAETTNER E, JESCH C, KINSEL W, PETRICK M, SCHEIDENBERGER C, SIMON A, YAVOR M I. A high-performance multiple-reflection time-of-flight mass spectrometer and isobar separator for the research with exotic nuclei[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 777: 172-188.
    [9]
    WOLF R N, WIENHOLTZ F, ATANASOV D, BECK D, BLAUM K, BORGMANN C H, HERFURTH F, KOWALSKA M, KREIM S, LITVINOV Y A, LUNNEY D, MANEA V, NEIDHERR D, ROSENBUSCH M, SCHW-EIKHARD L, STANJA J, ZUBER K. ISOLTRAP’s multi-reflection time-of-flight mass separator/spectrometer[J]. International Journal of Mass Spectrometry, 2013(349/350): 123-133.
    [10]
    WIENHOLTZ F, BECK D, BLAUM K, BORGMANN C H, BREITENFELDT M, CAKIRLI R B, GEORGE S, HERFURTH F, HOLT J D, KOWALSKA M, KREIM S, LUNNEY D, MANEA V, MENÉNDEZ J, NEIDHERR D, ROSENBUSCH M, SCHWEIKHARD L, SCHWENK A, SIMONIS J, STANJA J, WOLF R N, ZUBER K. Masses of exotic calcium isotopes pin down nuclear forces[J]. Nature, 2013, 498(7 454): 346-349.
    [11]
    ITO Y, SCHURY P, WADA M, NAIMI S, SONODA T, MITA H, ARAI F, TAKAMINE A, OKADA K, OZAWA A, WOLLNIK H. Single-reference high-precision mass measurement with a multireflection time-of-flight mass spectrograph[J]. Physical Review C, 2013, 88(1): 011 306.
    [12]
    SCHURY P, WADA M, ITO Y, ARAI F, NAIMI S, SONODA T, WOLLNIK H, SHCHEPUNOV V A, SMORRA C, YUAN C. A high-resolution multi-reflection time-of-flight mass spectrograph for precision mass measurements at RIKEN/SLOWRI[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2014, 335: 39-53.
    [13]
    KULIKOV I, ALGORA A, ATANASOV D, ASCHER P, BLAUM K, CAKIRLI R B, HERLERT A, HUANG W J, KARTHEIN J, LITVINOV Y A, LUNNEY D, MANEA V, MOUGEOT M, SCHWEIKHARD L, WELKER A, WIENHOLTZ F. Masses of short-lived 49Sc, 50Sc, 70As, 73Br and stable 196Hg nuclides[J]. Nuclear Physics A, 2020, 1 002: 121 990.
    [14]
    PIECHACZEK A, SHCHEPUNOV V, CARTER H K, BATCHELDER J C, ZGANJAR E F, LIDDICK S N, WOLLNIK H, HU Y, GRIFFITH B O. Development of a high resolution isobar separator for study of exotic decays[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2008, 266(19/20): 4510-4514.
    [15]
    PLAβ W R, DICKEL T, CZOK U, GEISSEL H, PETRICK M, REINHEIMER K, SCHEIDENBERGER C, YAVOR M I. Isobar separation by time-of-flight mass spectrometry for low-energy radioactive ion beam facilities[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2008, 266(19/20): 4560-4564.
    [16]
    BENNER W H. A gated electrostatic ion trap to repetitiously measure the charge and m/z of large electrospray ions[J]. Analytical Chemistry, 1997, 69(20): 4162-4168.
    [17]
    DAHAN M, FISHMAN R, HEBER O, RAPPAPORT M, ALTSTEIN N, ZAJFMAN D, van der ZANDE W J. A new type of electrostatic ion trap for storage of fast ion beams[J]. Review of Scientific Instruments, 1998, 69(1): 76-83.
    [18]
    SCHULTZ B E, KELLY J M, NICOLOFF C, LONG J, RYAN S, BRODEUR M. Construction and simulation of a multi-reflection time-of-flight mass spectrometer at the university of notre dame[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 376: 251-255.
    [19]
    WOLF R N, ERITT M, MARX G, SCHWEIKHARD L. A multi-reflection time-of-flight mass separator for isobaric purification of radioactive ion beams[J]. Hyperfine Interactions, 2011, 199(1/3): 115-122.
    [20]
    CHAUVEAU P, DELAHAYE P, de FRANCE G, el ABIR S, LORY J, MERRER Y, ROSENBUSCH M, SCHWEIKHARD L, WOLF R N. PILGRIM, a multireflection time-of-flight mass spectrometer for spiral2-S3 at GANIL[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 376: 211-215.
    [21]
    YOON J W, PARK Y H, IM K B, KIM G D, KIM Y K. Design study for a multi-reflection time-of-flight mass spectrograph for very short lived nuclei[C]. Proceedings of the Conference on Advances in Radioactive Isotope Science (ARIS2014), Tokyo, Japan: Journal of the Physical Society of Japan, 2015.
    [22]
    MURRAY K. The design and optimization of a multi-reflection time-of-flight mass-spectrometer for Barium tagging with nEXO and optimization of the 137Xe veto with EXO-200[D]. Canada: McGill University, 2018.
    [23]
    DAHL D A. Simion for the personal computer in reflection[J]. International Journal of Mass Spectrometry, 2000, 200(1/3): 3-25.
    [24]
    SCHURY P, OKADA K, SHCHEPUNOV S, SONODA T, TAKAMINE A, WADA M, WOLLNIK H, YAMAZAKI Y. Multi-reflection time-of-flight mass spectrograph for short-lived radioactive ions[J]. The European Physical Journal A, 2009, 42(3): 343.
    [25]
    王永生,田玉林,王均英,周小红,黄文学. 用于兰州彭宁离子阱的多反射飞行时间质量分析器的设计和优化[J]. 原子核物理评论,2017,34(3):624-629.
    WANG Yongsheng, TIAN Yulin, WANG Junying, ZHOU Xiaohong, HUANG Wenxue. Design and optimization of a multi-reflection time-of-flight mass spectrometer for LPT[J]. Nuclear Physics Review, 2017, 34(3): 624-629(in Chinese).
    [26]
    YAVOR M, VERENTCHIKOV A, HASIN J, KOZLOV B, GAVRIK M, TRUFANOV A. Planar multi-reflecting time-of-flight mass analyzer with a jig-saw ion path[J]. Physics Procedia, 2008, 1: 391-400.
    [27]
    DICKEL T, YAVOR M I, LANG J, PLAβ W R, LIPPERT W, GEISSEL H, SCHEIDENBERGER C. Dynamical time focus shift in multiple-reflection time-of-flight mass spectrometers[J]. International Journal of Mass Spectrometry, 2017, 412: 1-7.
    [28]
    KENNEDY J, EBERHART R. Particle swarm optimization[C]. Proceedings of ICNN′95-international conference on neural networks, IEEE, 1995: 1942-1948.
    [29]
    SHI Y, EBERHART R C. Empirical study of particle swarm optimization[C]. Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), IEEE, 1999: 1945-1950.
  • Related Articles

    [1]YANG Li-na, XIONG Xing-chuang, LIU Zi-long, FANG Xiang. Development and Research of Ion Optics Digital Simulation System for EI Source[J]. Journal of Chinese Mass Spectrometry Society, 2025, 46(1): 88-96. DOI: 10.7538/zpxb.2024.0067
    [2]WANG Xin-yu, REN Yi, HONG Yi, HUANG Qi, CHEN Zheng-ge, YUAN Li-yong, HUANG Zheng-xu, LI Mei, ZHOU Zhen. Design and Simulation of a Double Potential Well Flat Ion Trap[J]. Journal of Chinese Mass Spectrometry Society, 2023, 44(1): 34-45. DOI: 10.7538/zpxb.2022.0045
    [3]YANG Peng-yuan, ZHU Chen-xin, LIU Kai, LIU Ying-chao, LI Shun-xiang, ZHAO He-yu, JIA Bin. Quadrupole Ion Optics and Series Oscillating Electronics System[J]. Journal of Chinese Mass Spectrometry Society, 2020, 41(2): 101-109. DOI: 10.7538/zpxb.2019.0024
    [4]LI Gang, LI De-tian, CHENG Yong-jun, PEI Xiao-qiang, WANG Yong-jun, ZHANG Hu-zhong, DONG Meng, SUN Jian, ZHANG Qi. Effect of Voltage Instability on Motion Characteristics of Ions in Ion Trap[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(1): 1-9. DOI: 10.7538/zpxb.2017.0034
    [5]HE Yang, YAO Ru-jiao, XIAO Yu, YUAN Guang-zhou, ZHANG Zai-yue, DING Chuan-fan, LI Xiao-xu. Theoretical Research on Performance Optimization of PCB Voltage-Divided Ion Trap Mass Analyzer[J]. Journal of Chinese Mass Spectrometry Society, 2017, 38(3): 265-271. DOI: 10.7538/zpxb.youxian.2016.0056
    [6]WEI Guan-yi, LI Zhi-ming, ZHAI Li-hua, XU Jiang, SHEN Xiao-pan, ZHANG Zi-bin. Ion Optics Design in Magnet-Electric-Quadrupole Tandem Mass Spectrometer[J]. Journal of Chinese Mass Spectrometry Society, 2014, 35(3): 238-243. DOI: 10.7538/zpxb.2014.35.03.0238
    [7]WANG Jian, ZHU Zhi-xiang, DENG Liu-lin, LIU Cheng-yuan, PAN Yang. Principles, Applications and Progress of Mass Spectrometric Ion Guides[J]. Journal of Chinese Mass Spectrometry Society, 2012, 33(3): 139-148.
    [8]WANG Liang, XU Fu-xing, DING Chuan-fan. Primary Ion Optics System for Secondary Ion Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2012, 33(1): 1-6.
    [9]WEN Li-hua, LI Hai-yang, NIU Dong-mei, LUO Xiao-lin, CHAI Zhi-ping. Simulation Method of Ionic Peak Profile in Time-of-峰形模拟;飞行时间质谱;空间分布;速度分布flight Mass Spectrum and Its Application[J]. Journal of Chinese Mass Spectrometry Society, 2006, 27(1): 1-5.
    [10]Study on a Ion Optic System for Glow Discharge Time of Flight Mass Spectrometer[J]. Journal of Chinese Mass Spectrometry Society, 1997, 18(3): 13-13.

Catalog

    Article views (416) PDF downloads (273) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return