电感耦合等离子体质谱分析方法的重要进展(2005~2016年)

郭冬发, 李金英, 李伯平, 谢胜凯, 谭靖, 张彦辉, 刘瑞萍

郭冬发, 李金英, 李伯平, 谢胜凯, 谭靖, 张彦辉, 刘瑞萍. 电感耦合等离子体质谱分析方法的重要进展(2005~2016年)[J]. 质谱学报, 2017, 38(5): 599-610. DOI: 10.7538/zpxb.2016.0095
引用本文: 郭冬发, 李金英, 李伯平, 谢胜凯, 谭靖, 张彦辉, 刘瑞萍. 电感耦合等离子体质谱分析方法的重要进展(2005~2016年)[J]. 质谱学报, 2017, 38(5): 599-610. DOI: 10.7538/zpxb.2016.0095
GUO Dong-fa, LI Jin-ying, LI Bo-ping, XIE Sheng-kai, TAN Jing, ZHANG Yan-hui, LIU Rui-ping. Major Advances in Inductively Coupled Plasma Mass Spectrometry (2005—2016)[J]. Journal of Chinese Mass Spectrometry Society, 2017, 38(5): 599-610. DOI: 10.7538/zpxb.2016.0095
Citation: GUO Dong-fa, LI Jin-ying, LI Bo-ping, XIE Sheng-kai, TAN Jing, ZHANG Yan-hui, LIU Rui-ping. Major Advances in Inductively Coupled Plasma Mass Spectrometry (2005—2016)[J]. Journal of Chinese Mass Spectrometry Society, 2017, 38(5): 599-610. DOI: 10.7538/zpxb.2016.0095
郭冬发, 李金英, 李伯平, 谢胜凯, 谭靖, 张彦辉, 刘瑞萍. 电感耦合等离子体质谱分析方法的重要进展(2005~2016年)[J]. 质谱学报, 2017, 38(5): 599-610. CSTR: 32365.14.zpxb.2016.0095
引用本文: 郭冬发, 李金英, 李伯平, 谢胜凯, 谭靖, 张彦辉, 刘瑞萍. 电感耦合等离子体质谱分析方法的重要进展(2005~2016年)[J]. 质谱学报, 2017, 38(5): 599-610. CSTR: 32365.14.zpxb.2016.0095
GUO Dong-fa, LI Jin-ying, LI Bo-ping, XIE Sheng-kai, TAN Jing, ZHANG Yan-hui, LIU Rui-ping. Major Advances in Inductively Coupled Plasma Mass Spectrometry (2005—2016)[J]. Journal of Chinese Mass Spectrometry Society, 2017, 38(5): 599-610. CSTR: 32365.14.zpxb.2016.0095
Citation: GUO Dong-fa, LI Jin-ying, LI Bo-ping, XIE Sheng-kai, TAN Jing, ZHANG Yan-hui, LIU Rui-ping. Major Advances in Inductively Coupled Plasma Mass Spectrometry (2005—2016)[J]. Journal of Chinese Mass Spectrometry Society, 2017, 38(5): 599-610. CSTR: 32365.14.zpxb.2016.0095

电感耦合等离子体质谱分析方法的重要进展(2005~2016年)

Major Advances in Inductively Coupled Plasma Mass Spectrometry (2005—2016)

  • 摘要: 2005~2016这十几年中,电感耦合等离子体质谱(ICP-MS)仪器的性能得到了大幅改善,其灵敏度最高可达106 cps/(1 μg/L, In),稳定性为1%~2%。多接收ICP-MS精密度的提高尤其显著,同位素测量精密度优于0.01%。各类ICP-MS普遍采用高速数据采集技术与数据库技术,使数据处理能力进一步加强。以三重四极杆和高分辨为代表的ICP-MS对基体干扰和多原子离子干扰消除能力进一步加强,绿色节能环保型和智能型ICP-MS也得到了关注。一些电离能较高的贵金属、类金属和非金属元素分析技术得到重视。以激光烧蚀(LA)、高效液相色谱(HPLC)、气相色谱(GC)、离子色谱(IC)、毛细管电泳(CE)、电热蒸发(ETV)和化学气体发生(CVG)为代表的联用技术及形态分析发展快速。单颗粒(SP)和单细胞(SC)等技术与ICP-MS的联用产生了以功能定义的专用ICP-MS,大大扩展了ICP-MS的应用领域。ICP-MS分析技术从传统的无机元素分析发展到有机生物及形态分析,从传统的样品消解后溶液进样分析发展到固体样品在线进样分析,从传统的元素含量分析发展到2D-3D成像分析和高精度同位素分析。ICP-MS在能源、地质、材料、环保、生物医学、食品、国土安全等诸多领域的应用进一步扩展,成熟的ICP-MS分析方法实现了标准化并得到推广和普及。本工作从6个方面总结回顾了2005~2016年间ICP-MS的重要进展,并对其发展前景进行了展望。
    Abstract: In the last years(2005-2016), the performance of inductively coupled plasma mass spectrometry (ICP-MS) has been greatly improved, and its sensitivity was up to 106 cps/(1 μg/L, In), and the stability to 1%-2%. The precision of MC-ICP-MS has been remarkably improved, and the precision of isotope measurement is better than 0.01%. High speed data acquisition technology and database technology have been widely used in all kinds of ICP-MS, so that the data processing ability has been further strengthened. The ability to eliminate the interference from matrix and polyatomic ions has been further improved by triple tandem quadrupole and high resolution techniques. Various green energy saving and environmental protection measures for ICP-MS get attention. Analysis techniques for some high ionization energy elements like precious metals, metalloid and non-metals have been significantly addressed. Hyphenated techniques and speciation analysis of ICP-MS based on laser ablation (LA), high performance liquid chromatography (HPLC), gas chromatography (GC), ion chromatography (IC), capillary electrophoresis (CE), electrothermal vaporization (ETV) and chemical vapor generation (CVG) have been rapidly developed during this period. ICP-MS combined with single particle (SP) and single cell (SC) techniques led to the emergence of function defined ICP-MS and greatly expanded the applications of ICP-MS. Rapid development of ICP-MS technology has driven the ICP-MS applications from traditional inorganic elements analysis to organic biological and morphological analysis; from traditional solution sample introduction analysis to online solid sample introduction analysis; from traditional elements content analysis to 2D-3D imaging analysis and high precision isotope analysis. ICP-MS analysis technology in the field of energy, geology, materials, environmental protection, biomedicine, food, homeland security, and many other areas of application has been further expanded. The mature ICP-MS analysis methods have been standardized and widely applied to the routine analysis nationwide. This paper briefly summarized and reviewed the major advances of ICP-MS in the years of 2005-2016.
  •   2639

  • [1] BALCAEN L, BOLEAFERNANDEZ E, RESANO M, et al. Inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS): a powerful and universal tool for the interference-free determination of (ultra) trace elements a tutorial review[J]. Analytica Chimica Acta, 2015, 894: 7-19.
    [2] LIM F J. PlasmaQuant® MS-Eco plasma sets a new benchmark in -ICP-MS[J]. International Labmate, 2015, 40(3): 25.
    [3] DONOVAN A R, ADAMS C D, MA Y, et al. Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment[J]. Chemosphere, 2016, 144: 148-153.
    [4] Thermo Scientific ELEMENT XR: Extended dynamic range high resolution ICP-MS[R]. Application note 30064, Thermo Fisher Scientific, Bremen, Germany.
    [5] Precise and accurate determination of uranium isotopes[EB/OL]. http:∥nu-ins.com/wp-content/uploads/ 2016/02/AN35-NPII-Uranium.pdf.
    [6] LLOYD N S, SCIENTIFIC T F, BREMEN, et al. Uranium isotopic analysis for the nuclear industry using the thermo scientific NEPTUNE plus MC-ICP-MS[R]. Application note 30238, Thermo Fisher Scientific, Bremen, Germany.
    [7] OptiMass 9500 ICP-TOF MS[EB/OL]. http:∥www.gbcsci.com/products/icp_tof/optimass.asp.
    [8] BURGER M, GUNDLACH-GRAHAM A, ALLNER S, et al. High-speed, high-resolution, multielemental LA-ICP-TOF MS imaging: part II. critical evaluation of quantitative three-dimensional imaging of major, minor, and trace elements in geological samples[J]. Analytical Chemistry, 2015, 87(16): 8259-8267.
    [9] 符廷发. 新一代电感耦合等离子体质谱(ICP-MS)全谱同时测定技术[J]. 中国无机分析化学,2011,1(2):70-73.FU Tingfa. A newly developed inductively coupled plasma mass spectrometry technology for simultaneous measurement of a complete mass spectrum[J]. Chinese Journal of Inorganic Analytical Chemistry, 2011, 1(2): 70-73 (in Chinese).
    [10] TUORINIEMI J, CORNELIS G, HASSELL V M. New Peak recognition algorithm for detection of ultra small nano particles with single particle ICP-MS using rapid time resolved data acquisition on a sector-field mass spectrometer[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(8): 1723-1729.
    [11] HELLSTROM J C, PATON C, WOODHEAD J D, et al. Iolite: software for spatially resolved LA-(quad and MC) ICP-MS analysis[J]. 2008, 40(40): 343-348.
    [12] DUNKL I, MIKES T. Data handling, outlier rejection and calculation of isotope concentrations from laser ICP-MS analyses by PEPITA software[J]. Geochimica et Cosmochimica Acta, 2007, 71(15): A243.
    [13] 谢胜凯,郭冬发,谭靖,等. 国产电感耦合等离子体质谱仪测定地球化学样品中稀土和铀钍元素的含量[J]. 分析仪器,2013,(5):27-31.XIE Shengkai, GUO Dongfa, TAN Jing, et al. Determination of rare earth elements, U and Th in geological samples by inductively coupled plasma[J]. Analytical Instrumentation, 2013, (5): 27-31(in Chinese).
    [14] LU Y. Accurate and precise determination of isotopic ratios by MC-ICP-MS: a review[J]. Mass Spectrometry Reviews, 2009, 28(6): 990-1011.
    [15] 何学贤,朱祥坤,李世珍,等. 多接收器等离子体质谱(MC-ICP-MS)测定Mg同位素方法研究[J]. 岩石矿物学杂志,2008,27(5):441-448.HE Xuexian, ZHU Xiangkun, LI Shizhen, et al. High-precision measurement of magnesium isotopes using MC-ICP-MS[J]. Acta Petrologica et Mineralogica, 2008, 27(5): 441-448(in Chinese).
    [16] 张安余,张经,张瑞峰,等. 多接收电感耦合等离子体质谱仪测定稳定硅同位素[J]. 分析化学,2015,43(9):1353-1359.ZHANG Anyu, ZHANG Jing, ZHANG Ruifeng, et al. Determination of stable silicon isotopes using multi-collector inductive coupled plasma mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2015, 43(9): 1353-1359(in Chinese).
    [17] FIETZKE J, EISENHAUER A, GUSSONE N, et al. Direct measurement of 44Ca/40Ca ratios by MC-ICP-MS using the cool plasma technique[J]. Chemical Geology, 2009, 10(6): 22143-22175.
    [18] SCHOENBERG R, ZINK S, STAUBWASSER M, et al. The stable Cr isotope inventory of solid earth reservoirs determined by double spike MC-ICP-MS[J]. Chemical Geology, 2008, 249(3/4): 294-306.
    [19] 朱祥坤,李志红,赵新苗,等. 铁同位素的MC-ICP-MS测定方法与地质标准物质的铁同位素组成[J]. 岩石矿物学杂志,2008,27(4):263-272.ZHU Xiangkun, LI Zhihong, ZHAO Xinmiao, et al. High-precision measurements of Fe isotopes using MC-ICP-MS and Fe isotope compositions of geological reference materials[J]. Acta Petrologica et Mineralogica, 2008, 27(4): 263-272(in Chinese).
    [20] 朱建明,朱祥坤,黄方. 钼的稳定同位素体系及其地质应用[J]. 岩石矿物学杂志,2008,27(4):353-360.ZHU Jianming, ZHU Xiangkun, HUANG Fang. The systematics of molybdenum stable isotope and its application to earth science[J]. Acta Petrologica et Mineralogica, 2008, 27(4): 353-360(in Chinese).
    [21] 侯可军,李延河,邹天人, 等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报,2007,23(10):2595-2604.HOU Kejun, LI Yanhe, ZOU Tianren, et al. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of ziron and its geological applications[J]. Acta Petrologica Sinica, 2007, 23(10): 2595-2604(in Chinese).
    [22] 杜安道,屈文俊,李超,等. 铼-锇同位素定年方法及分析测试技术的进展[J]. 岩矿测试,2009,28(3):288-304.DU Andao, QU Wenjun, LI Chao, et al. A review on the development of Re-Os isotopic dating methods and techniques[J]. Rock and Mineral Analysis, 2009, 28(3): 288-304(in Chinese).
    [23] 尹润生,冯新斌,DELPHINE F,等. 多接收电感耦合等离子体质谱法高精密度测定汞同位素组成[J]. 分析化学,2010,38(7):929-934.YIN Runsheng, FENG Xinbin, DELPHINE F, et al. High precision determination of mercury isotope ratios using on line mercury vapor generation system coupled with multi-collector inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2010, 38(7): 929-934(in Chinese).
    [24] 王军,逯海,周涛,等. 非传统同位素体系标准物质研发进展[J]. 质谱学报,2010,31(4):193-201.WANG Jun, LU Hai, ZHOU Tao, et al. Advance in development of non-traditional isotope certified reference materials[J]. Journal of Chinese Mass Spectrometry Society, 2010, 31(4): 193-201(in Chinese).
    [25] GUO W, XIE W, JIN L, et al. Determination of sub-ng•g-1 Au in geological samples by ion molecule reaction ICP-MS and CH4 plasma modifier[J]. Rsc Advances, 2015, 5(125): 103 189-103 194.
    [26] 陆海川,黄艳波,杨旭. GFAAS和ICP-MS测定化探样品中的痕量金[J]. 黄金,2016,37(6):83-86.LU Haichuan, HUANG Yanbo, YANG Xu. Determination of trace gold in geochemical samples by GFAAS and ICP-MS[J]. Gold, 2016, 37(6): 83-86(in Chinese).
    [27] 孙朝阳,戴雪峰,代小吕,等. 氨水分离-电感耦合等离子体质谱法测定化探样品中的银[J]. 岩矿测试,2015,34(3):292-296.SUN Chaoyang, DAI Xuefeng, DAI Xiaolv. Determination of silver in samples for geochemical exploration by inductively coupled plasma-mass spectrometry after ammonia complexation[J]. Rock and Mineral Analysis, 2015, 34(3): 292-296(in Chinese).
    [28] 王君玉,孙自军,袁润蕾,等. 锡试金富集-电感耦合等离子体质谱法测定黑色页岩中的铂族元素[J]. 理化检验:化学分册,2013,49(8):972-975.WANG Junyu, SUN Zijun, YUAN Runlei, et al. ICP-MS determination of platinum metals in black shale enriched by tin fire assy[J]. PTCA (Part B Chem Anal), 2013, 49(8): 972-975(in Chinese).
    [29] MENARD G, VLASTÉLIC I, IONOV D A, et al. Precise and accurate determination of boron concentration in silicate rocks by direct isotope dilution ICP-MS: insights into the B budget of the mantle and B behavior in magmatic systems[J]. Chemical Geology, 2013, 354(5): 139-149.
    [30] 张萍,符靓,聂西度. ICP-MS法测定MnZn铁氧体中Si和P[J]. 光谱学与光谱分析,2014,34(3):808-811.ZHANG Ping, FU Liang, NIE Xidu. Determination of Si and P in MnZn ferrites by inductively coupled mass spectrometry[J]. Spectroscopy and Spectral Analysis, 2014, 34(3): 808-811(in Chinese).
    [31] 陈波,刘洪青,邢应香. 电感耦合等离子体质谱法同时测定地质样品中锗硒碲[J]. 岩矿测试,2014,33(2):192-196.CHEN Bo, LIU Hongqing, XING Yingxiang. Simultaneous determination of Ge, Se and Te in geological samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2014, 33(2): 192-196(in Chinese).
    [32] 王文青,张丽媛,魏宇锋,等. 微波消解/ICP-MS法测定食品级润滑油(脂)中的锑、砷、镉、铅、汞、硒[J]. 分析试验室,2014,33(12):1430-1433.WANG Wenqing, ZHANG Liyuan, WEI Yu-feng, et al. ICP-MS determination of harmful elements of As, Se, Cd, Sb, Hg, Pb in food-grade lubricating oils and greases with microwave digestion[J]. Chinese Journal of Analysis Laboratory, 2014, 33(12): 1430-1433(in Chinese).
    [33] BANDURA D R, BARANOV V I, TANNER S D. Detection of ultratrace phosphorus and sulfur by quadrupole ICP-MS with dynamic reaction cell[J]. Analytical Chemistry, 2002, 74(7): 1497-1502.
    [34] BARBOSA J T P, SANTOS C M M. Bromine, chlorine, and iodine determination in soybean and its products by ICP-MS after digestion using microwave-induced combustion[J]. Food Analytical Methods, 2013, 6(4): 1065-1070.
    [35] ZONG K Q, CHEN J Y, HU Z C, et al. In-situ U-Pb dating of uraninite by fs-LA-ICP-MS[J]. Science China Earth Sciences, 2015, 58(10): 1-10.
    [36] DRESCHER D, GIESEN C, TRAUB H, et al. Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS[J]. Analytical Chemistry, 2012, 84(22): 9684-9688.
    [37] 汪伟,李志明,徐江,等. 激光烧蚀-多接收电感耦合等离子体质谱法测定铀颗粒物中铅杂质的同位素比值[J]. 分析化学,2016,44(7):1053-1058.WANG Wei, LI Zhiming, XU Jiang, et al. Isotopic abundance analysis of lead in uranium particles by laser ablation multiple collector inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2016, 44(7): 1053-1058(in Chinese).
    [38] KIM J Y, KIM W I, KUNHIKRISHNAN A, et al. Determination of arsenic species in rice grains using HPLC-ICP-MS[J]. Food Science and Biotechnology, 2013, 22(6): 1509-1513.
    [39] SÉBY F, GLEYZES C, GROSSO O, et al. Speciation of antimony in injectable drugs used for leishmaniasis treatment (Glucantime®) by HPLC-ICP-MS and DPP[J]. Analytical & Bioanalytical Chemistry, 2012, 404(10): 2939-2948.
    [40] INFANTE H G, BORREGO A A, PEACHEY E, et al. Study of the effect of sample preparation and cooking on the selenium speciation of selenized potatoes by HPLC with ICP-MS and electrospray ionization MS/MS[J]. Journal of Agricultural & Food Chemistry, 2009, 57(1): 38-45.
    [41] ONG K, LIM L, GHANTHIMATHI S, et al. Speciation: determination of methylmercury in fish samples with HPLC-ICP-MS[J]. From Sources to Solution, 2014, 32(3): 375-378.
    [42] CUYCKENS F, BALCAEN L I, DE W K, et al. Use of the bromine isotope ratio in HPLC-ICP-MS and HPLC-ESI-MS analysis of a new drug in development[J]. Analytical and Bioanalytical Chemistry, 2008, 390(7): 1717-1729.
    [43] SPOLAOR A, VALLELONGA P, GABRIELI J, et al. Speciation analysis of iodine and bromine at pictogram-per-gram levels in polar ice[J]. Analytical & Bioanalytical Chemistry, 2012, 405(2/3): 647-654.
    [44] SOMMER Y L, VERDON C P, FRESQUEZ M R, et al. Measurement of mercury species in human blood using triple spike isotope dilution with SPME-GC-ICP-DRC-MS[J]. Analytical & Bioanalytical Chemistry, 2014, 406(20): 5039-5047.
    [45] NELSON J, HOPFER H, SILVA F, et al.Evaluation of GC-ICP-MS/MS as a new strategy for specific heteroatom detection of phosphorus, sulfur, and chlorine determination in foods[J]. Journal of Agricultural & Food Chemistry, 2015, 63(18): 4478-4483.
    [46] YOSHIDA S, MURAMATSU Y, KATOU S. Determination of the chemical forms of iodine with IC-ICP-MS and its application to environmental samples[J]. Journal of Radioanalytical and Nuclear Chemistry, 2007, 273(1): 211-214.
    [47] LENZ M, FLOOR G H, WINKEL L H, et al. Online preconcentration IC-ICP-MS for selenium quantification and speciation at ultratraces[J]. Environmental Science & Technology, 2014, 46(21): 11988-11994.
    [48] NGUYEN T T, STERGAARD J, GAMMELGAARD B. A method for studies on interactions between a gold-based drug and plasma proteins based on capillary electrophoresis with inductively coupled plasma mass spectrometry detection[J]. Analytical & Bioanalytical Chemistry, 2015, 407(28): 1-7.
    [49] NGUYEN T T,ØSTERGAARD J, STÜRUP S, et al. Investigation of a liposomal oxaliplatin drug formulation by capillary electrophoresis hyphenated to inductively coupled plasma mass spectrometry (CE-ICP-MS)[J]. Analytical & Bioanalytical Chemistry, 2012, 402(6): 2131-2139.
    [50] MELLO P A, PEDROTTI M F, CRUZ S M, et al. Determination of rare earth elements in graphite by solid sampling electrothermal vaporization-inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(10): 2048-2055.
    [51] TSENG Y J, TSAI Y D, JIANG S J. Electrothermal vaporization dynamic reaction cell inductively coupled plasma mass spectrometry for the determination of Fe, Co, Ni, Cu, and Zn in biological samples[J]. Analytical & Bioanalytical Chemistry, 2007, 387(8): 2849-2855.
    [52] VIEIRA M A, RIBEIRO A S, DIAS L F, et al. Determination of Cd, Hg, Pb and Se in sediments slurries by isotopic dilution calibration ICP-MS after chemical vapor generation using an on-line system or retention in an electrothermal vaporizer treated with iridium[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2005, 60(5): 643-652.
    [53] STURGEON R E. Detection of bromine by ICP-OA-TOF-MS following photochemical vapor generation[J]. Analytical Chemistry, 2015, 87(5): 3072-3079.
    [54] BENDALL S C, SIMONDS E F, PENG Q,et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum[J]. Science, 2011, 332(6030): 687-696.
    [55] PETERS R, HERRERARIVERA Z, UNDAS A, et al. Single particle ICP-MS combined with a data evaluation tool as a routine technique for the analysis of nanoparticles in complex matrices[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(6): 275-297.
    [56] MEERMANN B, LABORDA F. Analysis of nanomaterials by field-flow fractionation and single particle ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(6): 1226-1228.
    [57] FRANZE B, ENGELHARD C. Fast separation, characterization, and speciation of gold and silver nanoparticles and their ionic counterparts with micellar electrokinetic chromatography coupled to ICP-MS[J]. Analytical Chemistry, 2014, 86(12): 5713-5720.
    [58] LEE S, BI X Y, REED R B, et al. Nanoparticle size detection limits by single particle ICP-MS for 40 elements[J]. Environmental Science & Technology, 2014, 48(17): 10291-10300.
    [59] VERLEYSEN E, DOREN E V, WAEGENEERS N, et al. TEM and SP-ICP-MS analysis of the release of silver nanoparticles from decoration of pastry[J]. Journal of Agricultural & Food Chemistry, 2015, 63(13): 3570-3578.
    [60] MUDALIGE T K, QU H, LINDER S W. Asymmetric flow field flow fractionation hyphenated ICP-MS as an alternative to cloud point extraction for quantification of silver nanoparticles and silver speciation: application for nanoparticles with protein corona[J]. Analytical Chemistry, 2015, 87(14): 7395-7401.
    [61] DRESCHER D, GIESEN C, TRAUB H, et al. Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS[J]. Analytical Chemistry, 2012, 84(22): 9684-9688.
    [62] HO K S. Single-cell analysis using inductively coupled plasma mass spectrometry[D]. Hong Kong: The University of Hong Kong (Pokfulam, Hong Kong), 2012.
图(1)
计量
  • 文章访问数:  655
  • HTML全文浏览量:  0
  • PDF下载量:  1002
  • 被引次数: 0
出版历程
  • 刊出日期:  2017-09-19

目录

    /

    返回文章
    返回