[1] |
MILTON M J T, MILLS I M. Amount of substance and the proposed redefinition of the mole[J]. Metrologia, 2009, 46(3): 332-338.
|
[2] |
AGGARWAL S K. Thermal ionisation mass spectrometry (TIMS) in nuclear science and technology-a review[J]. Analytical Methods, 2016, 8(5): 942-957.
|
[3] |
HABFAST. Fractionation correction and multiple collectors in thermal ionization isotope ratio mass spectrometry[J]. International Journal of Mass Spectrometry, 1998, 176(1/2): 133-148.
|
[4] |
COHEN K. The theory of isotope separation[M]. McGraw-Hill, New York, 1951.
|
[5] |
ROMKOWSKI M, FRANZINI S, KOCH L. Mass spectrometric analysis of sub-nanocurie samples of uranium and plutonium[M]. ESARDA Symposium, London, 1987.
|
[6] |
WAGNER G, TUTTAS D, POESTHORST D, ROMKOWSKI M, FRANZINI S, KOCH L. Total evaporation/integration with mixed multicollection modes: new effective approaches for thermal ionization MS[C]. Proceedings of the 36th ASMS Conference on Mass Spectrometry and Allied Topics, San Francisco, 1988.
|
[7] |
CALLIS E L. High-precision isotopic analyses of uranium and plutonium by total sample volatilization and signal integration[J]. International Journal of Mass Spectrometry and Ion Processes, 1991, 103(2/3): 93-105.
|
[8] |
FIEDLER R. Total evaporation measurements: experience with multi-collector instruments and a thermal ionization quadrupole mass spectrometer[J]. International Journal of Mass Spectrometry and Ion Processes, 1995, 146/147: 91-97.
|
[9] |
SUZUKI K, MIYATA Y, KANAZAWA N. Precise Re isotope ratio measurements by negative thermal ionization mass spectrometry (NTI-MS) using total evaporation technique[J]. International Journal of Mass Spectrometry, 2004, 235(1): 97-101.
|
[10] |
YOKOYAMA T, NAKAMURA E. Precise analysis of the 228Ra/226Ra isotope ratio for short-lived U-series disequilibria in natural samples by total evaporation thermal ionization mass spectrometry (TE-TIMS)[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(6): 717-723.
|
[11] |
FOSTER G L, NI Y, HALEY B, ELLIOTT T. Accurate and precise isotopic measurement of sub-nanogram sized samples of foraminiferal hosted boron by total evaporation NTIMS[J]. Chemical Geology, 2006, 230(1/2): 161-174.
|
[12] |
FUJII T, SUZUKI D, WATANABE K, YAMANA H. Application of the total evaporation technique to chromium isotope ratio measurement by thermal ionization mass spectrometry[J]. Talanta, 2006, 69(1): 32-36.
|
[13] |
WAKAKI S, SHIBATA S N, TANAKA T. Isotope ratio measurements of trace Nd by the total evaporation normalization (TEN) method in thermal ionization mass spectrometry[J]. International Journal of Mass Spectrometry, 2007, 264(2/3): 157-163.
|
[14] |
MIALLE S, QUÉMET A, PONVIENNE A, GOURGIOTIS A, AUBERT M, ISNARD H, CHARTIER F. The use of total evaporation method using Channeltron electron multipliers by thermal ionization mass spectrometry for europium isotope ratio measurements on picogram sample amounts[J]. International Journal of Mass Spectrometry, 2012, 309: 141-147.
|
[15] |
QUEMET A, MAILLARD C, RUAS A. Determination of zirconium isotope composition and concentration for nuclear sample analysis using thermal ionization mass spectrometry[J]. International Journal of Mass Spectrometry, 2015, 392: 34-40.
|
[16] |
WANG J, REN T, LU H, ZHOU T, ZHOU Y. The absolute isotopic composition and atomic weight of ytterbium using multi-collector inductively coupled plasma mass spectrometry and development of an SI-traceable ytterbium isotopic certified reference material[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(6): 1377-1385.
|
[17] |
RICHTER S, GOLDBERG S A. Improved techniques for high accuracy isotope ratio measurements of nuclear materials using thermal ionization mass spectrometry[J]. International Journal of Mass Spectrometry, 2003, 229(3): 181-197.
|
[18] |
LANGMUIR I, KINGDON K H. Thermionic effects caused by vapours of alkali metals[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1925, 107(741): 61-79.
|
[19] |
DAVID R L. CRC handbook of chemistry and physics[M]. 87 ed. CRC Press, Boca Raton, 2005.
|
[20] |
JAKOPICˇR, RICHTER S, KÜHN H, BENEDIK L, PIHLAR B, AREGBE Y. Isotope ratio measurements of pg-size plutonium samples using TIMS in combination with “multiple ion counting” and filament carburization[J]. International Journal of Mass Spectrometry, 2009, 279(2/3): 87-92.
|
[21] |
YOKOYAMA T, MAKISHIMA A, NAKAMURA E. Precise analysis of 234U/238U ratio using UO2+ ion with thermal ionization mass spectrometry for natural samples[J]. Chemical Geology, 2001, 181(1/2/3/4): 1-12.
|
[22] |
CHEN J H, WASSERBURG G L. Isotopic determination of uranium in picomole andsubpicomole quantities[J]. Analytical Chemistry, 1981, 53(13): 2060-2067.
|
[23] |
BIRCK J L. Precision K-Rb-Sr isotopic analysis: application to Rb-Sr chronology[J]. Chemical Geology, 1986, 56(1/2): 73-83.
|
[24] |
DRESSER M J. The Saha-Langmuir equation and its application[J]. Journal of Applied Physics, 1968, 39(1): 338-339.
|
[25] |
LUGUET A, NOWELL G M, PEARSON D G. 184Os/188Os and 186Os/188Os measurements by negative thermal ionisation mass spectrometry (N-TIMS): effects of interfering element and mass fractionation corrections on data accuracy and precision[J]. Chemical Geology, 2008, 248(3/4): 342-362.
|
[26] |
CARLSON R W. 15.18-Thermal ionization mass spectrometry[M]. Treatise on Geochemistry, Second Edition (Eds.: Holland H, Turekian K), Elsevier Ltd, 2014: 337-354.
|
[27] |
DARBYSHIREA D P F, SEWELLB R J. Nd and Sr isotope geochemistry of plutonic rocks from Hong Kong: implications for granite petrogenesis, regional structure and crustal evolution[J]. Chemical Geology, 1997, 143(1/2): 81-93.
|
[28] |
ONIONS R K, HAMILTON P J, EVENSEN N M. Variations in 143Nd/144Nd and 87Sr/86Sr ratios in oceanic basalts[J]. Earth and Planetary Science Letters, 1977, 34(1): 13-22.
|
[29] |
谭德灿,朱建明,王静,陶发祥,曾理. 同位素双稀释剂法的原理与应用原理部分[J]. 矿物岩石地球化学通报,2016,35(1):138-145.TAN Decan, ZHU Jianming, WANG Jing, TAO Faxiang, ZENG Li. The principle and application of isotopic double spike technique Ⅰ: principle[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(1): 138-145(in Chinese).
|
[30] |
LI C F, GUO J H, CHU Z Y, FENG L J, WANG X C. Direct high-precision measurements of the 87Sr/86Sr isotope ratio in natural water without chemical separation using thermal ionization mass spectrometry equipped with 1012 Ω resistors[J]. Analytical Chemistry, 2015, 87(14): 7426-7432.
|
[31] |
FIETZKE J, EISENHAUER A. Determination of temperature-dependent stable strontium isotope (88Sr/86Sr) fractionation via bracketing standard MC-ICP-MS[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(8): 1-6.
|
[32] |
SHALEV N, SEGAL I, LAZAR B, GAVRIELI I, FIETZKE J, EISENHAUER A, HALICZ L. Precise determination of δ 88/86Sr in natural samples by double-spike MC-ICP-MS and its TIMS verification[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(6): 940.
|
[33] |
COATH C D, ELLIOTT T, HIN R C. Doublespike inversion for three-isotope systems[J]. Chemical Geology, 2017, 451: 78-89.
|
[34] |
RICHTER S, KÜHN H, AREGBE Y, HEDBERG M, HORTA-DOMENECH J, MAYER K, ZULEGER E, BÜRGER S, BOULYGA S, KÖPF A, POTHS J, MATHEW K. Improvements in routine uranium isotope ratio measurements using the modified total evaporation method for multi-collector thermal ionization mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(3): 550-564.
|
[35] |
WEGENER M R, MATHEW K J, HASOZBEK A. The direct total evaporation (DTE) method for TIMS analysis[J]. Journal of Radioanalytical and Nuclear Chemistry, 2012, 296(1): 441-445.
|
[36] |
FUKAMI Y, TOBITA M, YOKOYAMA T, USUI T, MORIWAKI R. Precise isotope analysis of sub-nanogram lead by total evaporation thermal ionization mass spectrometry (TE-TIMS) coupled with a 204Pb-207Pb double spike method[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(4): 848-857.
|
[37] |
MATHEW K J, HAOSZBEK A. Comparison of mass spectrometric methods (TE, MTE and conventional) for uranium isotope ratio measurements[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 307(3): 1681-1687.
|
[38] |
WIESER M E, SCHWIETERS J B. The development of multiple collector mass spectrometry for isotope ratio measurements[J]. International Journal of Mass Spectrometry, 2005, 242(2/3): 97-115.
|
[39] |
QUEMET A, MALOUBIER M, RUAS A. Contribution of the Faraday cup coupled to 1012 Ω current amplifier to uranium 235/238 and 234/238 isotope ratio measurements by thermal ionization mass spectrometry[J]. International Journal of Mass Spectrometry, 2016, 404: 35-39.
|
[40] |
TRINQUIER A, KOMANDER P. Precise and accurate uranium isotope analysis by modified total evaporation using 1013 Ω current amplifiers[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 307(3): 1927-1932.
|
[41] |
STANLEY F E, BYERLY B L, THOMAS M R, SPENCER K J. Static, mixed-array total evaporation for improved quantitation of plutonium minor isotopes in small samples[J]. Journal of the American Society for Mass Spectrometry, 2016, 27(6): 1136-1138.
|
[42] |
QUEMET A, MALOUBIER M, DALIER V, RUAS A. Development of an analysis method of minor uranium isotope ratio measurements using electron multipliers in thermal ionization mass spectrometry[J]. International Journal of Mass Spectrometry, 2014, 374: 26-32.
|
[43] |
BÜRGER S, ESSEX R M, MATHEW K J, RICHTER S, THOMAS R B. Implementation of guide to the expression of uncertainty in measurement (GUM) to multi-collector TIMS uranium isotope ratio metrology[J]. International Journal of Mass Spectrometry, 2010, 294(2/3): 65-76.
|
[44] |
KIRKUP. An introduction to uncertainty in measurement: using the GUM (guide to the expression of uncertainty in measurement)[M]. 2006.
|
[45] |
MATHEW K J, O'CONNOR G, HASOZBEK A, KRAIEM M. Total evaporation method for uranium isotope-amount ratio measurements[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(6): 866.
|
[46] |
MATHEW K, MASON P, VOEKS A, NARAYANAN U. Uranium isotope abundance ratios in natural uranium metal certified reference material 112-A[J]. International Journal of Mass Spectrometry, 2012, 315: 8-14.
|
[47] |
王松,王军. 全蒸发-热电离质谱法准确性及不确定度评估[C]. 中国质谱学会无机及同位素质谱学术会议,2017.
|
[48] |
李金英,郭冬发,吉燕琴,赵永刚,李力力,崔建勇,石磊. 电感耦合等离子体质谱、热电离质谱和二次离子质谱技术在核工业中的新进展[J]. 质谱学报,2010,31(5):257-263.LI Jinying, GUO Dongfa, JI Yanqin, ZHAO Yonggang, LI Lili, CUI Jianyong, SHI Lei. Recent progress of nuclear technological appl ication for inductively coupled plasma mass spectrometry (ICP-MS), thermal ionizationmass spectrometry (TIMS) and secondary ion mass spectrometry (SIMS)[J]. Journal of Chinese Mass Spectrometry Society, 2010, 31(5): 257-263(in Chinese).
|
[49] |
FIEDLER R, DONOHUE D, GRABMUELLER G, KUROSAWA A. Report on preliminary experience with total evaporation measurements in thermal ionization mass spectrometry[J]. International Journal of Mass Spectrometry and Ion Processes, 1994, 132(3): 207-215.
|
[50] |
徐常昆,朱留超,赵兴红,王同兴. 铀芯块中铀同位素比的分析[M]. 北京:中国原子能科学研究院年报,2017.
|
[51] |
STEIER P, BICHLER M, KEITH FIFIELD L, GOLSER R, KUTSCHERA W, PRILLER A, QUINTO F, RICHTER S, SRNCIK M, TERRASI P, WACKER L, WALLNER A, WALLNER G, WILCKEN K M, MARIA WILD E. Natural and anthropogenic 236U in environmental samples[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2008, 266(10): 2246-2250.
|
[52] |
JAKOPICˇR, RICHTER S, KÜHN H, AREGBE[HJ] Y. Determination of 240Pu/239Pu, 241Pu/239Pu and 242Pu/239Pu isotope ratios in environmental reference materials and samples from Chernobyl by thermal ionization mass spectrometry (TIMS) and filament carburization[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(6): 815.
|
[53] |
倪云燕. 全蒸发负热电离质谱法测试硼同位素[C]. 第十一届全国有机地球化学学术会议,2007.
|
[54] |
BOULYGA S F. Calcium isotope analysis by mass spectrometry[J]. Mass Spectrometry Reviews, 2010, 29(5): 685-716.
|
[55] |
中华人民共和国国家质量监督检验检疫总局. JJF 1508—2015 同位素丰度测量基准方法[S]. 北京:中国标准出版社,2015.
|
[56] |
徐常昆,周涛,赵永刚. 全蒸发热电离质谱法测量浓缩铜样品的同位素丰度比[C]. 第十一届全国核化学与放射化学学术研讨会,2012.
|
[57] |
国家质量监督检验检疫总局, 中国计量科学研究院. 国家标准物质资源共享平台[EB/OL]. http:∥www.ncrm.org.cn.
|
[58] |
逯海,王军,周涛,任同祥,李金英. 锌同位素丰度比测量中的几个关键问题[J]. 同位素,2010,23(1):47-52.LU Hai, WANG Jun, ZHOU Tao, REN Tongxiang, LI Jinying. Discussion on the key factorsof abundance ratios about Zn isotope measurement[J]. Journal of Isotopes, 2010, 23(1): 47-52(in Chinese).
|
[59] |
RICHTER S, ALONSO A, BOLLE W D, KüHN H, VERBRUGGEN A, WELLUM R, TAYLOR P D P. Re-certification of a series of uranium isotope reference materials: IRMM-183, IRMM-184, IRMM-185, IRMM-186 and IRMM-187[J]. International Journal of Mass Spectrometry, 2005, 247(1/2/3): 37-39.
|
[60] |
RICHTER S, ALONSO A, AREGBE Y, EYKENS R, JACOBSSON U, KEHOE F, KUEHN H, VERBRUGGEN A, WELLUM R. Certification of a new series of gravimetrically prepared synthetic reference materials for n(236U)/n(238U) isotope ratio measurements[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(7/8): 956-959.
|
[61] |
MATHEW K J, SINGLETON G L, ESSEX R M, HASOZBEK A, ORLOWICZ G, SORIANO M. Characterization of uranium isotopic abundances in depleted uranium metal assay standard 115[J]. Journal of Radioanalytical and Nuclear Chemistry, 2012, 296(1): 435-440.
|
[62] |
KRAIEM M, ESSEX R M, MATHEW K J, ORLOWICZ G J, SORIANO M D. Re-certification of the CRM 125-A UO2 fuel pellet standard for uranium isotopic composition[J]. International Journal of Mass Spectrometry, 2013, 352: 37-43.
|
[63] |
MATHEW K J, ESSEX R M, HASOZBEK A, ORLOWICZ G, SORIANO M. Uranium isotope-amount ratios in certified reference material 116-A-Uranium (enriched) metal assay and isotopic standard[J]. International Journal of Mass Spectrometry, 2014, 369: 48-58.
|
[64] |
SONG P, WANG J, REN T X, ZHOU T, ZHOU Y J, WANG S. Accurate determination of the absolute isotopic composition and atomic weight of molybdenum by MC-ICP-MS with a fully calibrated strategy[J]. Analytical Chemistry, 2017, 89(17): 9031-9038.
|
[65] |
BRGER S, BALSLEY S D, BAUMANN S, BERGER J, BOULYGA S F, CUNNINGHAM J A, KAPPEL S, KOEPF A, POTHS J. Uranium and plutonium analysis of nuclear material samples by multicollector thermal ionisation mass spectrometry: quality control, measurement uncertainty, and metrological traceability[J]. International Journal of Mass Spectrometry, 2012, 311: 40-50.
|