[1] |
IAEA. Safeguards techniques and equipment 2011 Edition[R]. Vienna, 2011.
|
[2] |
LEE C G, IGUCHI K, INAGAWA J, SUZUKI D, ESAKA F, MAGARA M, SAKURAI S, WATANABE K, USUDA S. Development in fission track-thermal ionization mass spectrometry for particle analysis of safeguards environmental samples[J]. J Radioanal Nucl Chem, 2007, 274(3): 663.
|
[3] |
SHEN Y, ZHAO Y, GUO S L, CUI J, LIU Y, LI J, XU J, ZHANG H. Study on analysis of isotopic ratio of uranium-bearing particle in swipe samples by FT-TIMS[J]. Radiat Meas, 2008, 43(Suppl 1): s299-s302.
|
[4] |
杨天丽,刘雪梅,刘钊,汤磊,龙开明. FT-TIMS用于核保障安全监督擦拭样品中含铀微粒的分析技术[R]. 中国核科技报告,2008.
|
[5] |
TAMBORINI G, BETTI M, FORCINA V, HIERNAUT T, GIOVANNONE B, KOCH L. Application of secondary ion mass spectrometry to the identification of single particles of uranium and their isotopic measurement[J]. Spectrochim Acta B, 1998, 53(9): 1289-1302.
|
[6] |
李安利,赵永刚,李静,王林博. 核保障的微粒分析与二次离子质谱仪[J]. 质谱学报,2006,27(3):173-177. LI Anli, ZHAO Yonggang, LI Jing, WANG Linbo. Particle analysis in nuclear safeguards and secondary ion mass spectrometer[J]. Journal of Chinese Mass Spectrometry Society, 2006, 27(3): 173-177(in Chinese).
|
[7] |
VARGA Z. Application of laser ablation inductively coupled plasma mass spectrometry for the isotopic analysis of single uranium particles[J]. Anal Chim Acta, 2008, 625: 1-7.
|
[8] |
汪伟,李志明,徐江,周国庆,沈小攀,翟利华. 激光烧蚀-多接收电感耦合等离子体质谱测定铀颗粒物中铀全同位素比值[J]. 分析化学,2015,43(5):703-708.WANG Wei, LI Zhiming, XU Jiang, ZHOU Guoqing, SHEN Xiaopan, ZHAI Lihua. Determination of uranium isotope ratios in uranium particles by laser ablation multiple collector inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2015, 43(5): 703-708(in Chinese).
|
[9] |
NOMIZU T, KANECO S, TANAKA T, YAMAMOTO T, KAWAGUCHI H. Determination of femto-gram amounts of zinc and lead in individual airborne particles by inductively coupled plasma mass spectrometry with direct air-sample introduction[J]. Anal Sci, 1993, 9: 843-846.
|
[10] |
NOMIZU T, HAYASHI H, HOSHINO N, TANAKA T, KAWAGUCHI H, KITAGAWA K, KANECO S. Determination of zinc in individual airborne particles by inductively coupled plasma mass spectrometry with digital signal processing[J]. J Anal At Spectrom, 2002, 17(6): 592-595.
|
[11] |
MYOJO T, TAKAYA M, ONO-OGASAWARA M. DMA as a gas converter from aerosol to ‘argonsol’ for real-time chemical analysis using ICP-MS[J]. Aerosol Sci Technol, 2002, 36(1): 76-83.
|
[12] |
NISHIGUCHI K, UTANI K, FUJIMORI E. Real-time multielement monitoring of airborne particulate matter using ICP-MS instrument equipped with gas converter apparatus[J]. J Anal At Spectrom, 2008, 23(8): 1125.
|
[13] |
SUZUKI Y, SATO H, HIKIDA S, NISHIGUCHI K, FURUTA N. Real-time monitoring and determination of Pb in a single airborne nanoparticle[J]. J Anal At Spectrom, 2010, 25(7): 947-949.
|
[14] |
SUZUKI Y, SATO H, HIYOSHI K, FURUTA N. Quantitative real-time monitoring of multi elements in airborne particulates by direct introduction into an inductively coupled plasma mass spectrometer[J]. Spectrochim Acta Part B At Spectrosc, 2012, 76: 133-139.
|
[15] |
DEGUELDRE C, FAVARGER P Y. Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study[J]. Colloids Surfaces A Physicochem Eng Asp, 2003, 217(1/2/3): 137-142.
|
[16] |
DEGUELDRE C, FAVARGER P Y. Thorium colloid analysis by single particle inductively coupled plasma-mass spectrometry[J]. Talanta, 2004, 62(5): 1051-1054.
|
[17] |
DEGUELDRE C, FAVARGER P Y, BITEA C. Zirconia colloid analysis by single particle inductively coupled plasma-mass spectrometry[J]. Anal Chim Acta, 2004, 518(1/2): 137-142.
|
[18] |
DEGUELDRE C, FAVARGER P Y, WOLD S. Gold colloid analysis by inductively coupled plasma-mass spectrometry in a single particle mode[J]. Anal Chim Acta, 2006, 555(2): 263-268.
|
[19] |
DEGUELDRE C, FAVARGER P Y, ROSS R, WOLD S. Uranium colloid analysis by single particle inductively coupled plasma-mass spectrometry[J]. Talanta, 2006, 68: 623-628.
|
[20] |
EBDON L, FOULKES M, SUTTON K. Slurry nebulization in plasmas[J]. J Anal At Spectrom, 1997, 12(2): 213-229.
|
[21] |
SANTOS M C, NÓBREGA J A. Slurry nebulization in plasmas for analysis of inorganic materials[J]. Appl Spectrosc Rev, 2006, 41(4): 427-448.
|
[22] |
LABORDA F, BOLEA E, JIMÉNEZ-LAMANA J. Single particle inductively coupled plasma mass spectrometry for the analysis of inorganic engineered nanoparticles in environmental samples[J]. Trends Environ Anal Chem, 2016, 9: 15-23.
|
[23] |
MONTAÑO M D, OLESIK J W, BARBER A G, CHALLIS K, RANVILLE J F. Single particle ICP-MS: advances toward routine analysis of nanomaterials[J]. Anal Bioanal Chem, 2016, 408(19): 5053-5074.
|
[24] |
MEERMANN B, NISCHWITZ V. ICP-MS for the analysis at the nanoscale-a tutorial review[J]. J Anal At Spectrom, 2018, 33(9): 1432-1468.
|
[25] |
LABORDA F, BOLEA E, JIMÁNEZ-LAMANA J. Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis[J]. Anal Chem, 2014, 86: 2270-2278.
|
[26] |
LEE W W, CHAN W T. Calibration of single-particle inductively coupled plasma-mass spectrometry (SP-ICP-MS)[J]. J Anal At Spectrom, 2015, 30(6): 1245-1254.
|
[27] |
LIU R, WU P, YANG L, HOU X, LV Y. Inductively coupled plasma mass spectrometry-based immunoassay: a review[J]. Mass Spectrom Rev, 2014, 33(5): 373-393.
|
[28] |
International Organization for Standardization. ISO/TS 19590:2017, Nanotechnologies-size distribution and concentration of inorganic nanoparticles in aqueous media via single particle inductively coupled plasma mass spectrometry[R]. Geneva, 2017.
|
[29] |
金玉仁,章连众,韩世钧,朱凤蓉,白峻峰,周国庆,马锋,张利兴. 萃取色层分离同位素稀释ICP-MS测定空气中费克量钚[J]. 化学学报,2000,58(10):1291-1295.JIN Yuren, ZHANG Lianzhong, HAN Shijun, ZHU Fengrong, BAI Junfeng, ZHOU Guoqing, MA Feng, ZHANG Lixing. Determination of fetogram plutonium by extraction chromatography using isotope dilution inductively coupled plasma mass spectrometry[J]. Acta Chimica Sinica, 2000, 58(10): 1291-1295(in Chinese).
|
[30] |
周国庆,朱凤蓉,张子斌,白峻峰,金玉仁,张佳媚,董宏波,李梅,翟利华. 大气气溶胶中超痕量钚的电感耦合等离子体质谱(ICP-MS)分析[J]. 质谱学报,2002,23(3):151-155.ZHOU Guoqing, ZHU Fengrong, ZHANG Zibin, BAI Junfeng, JIN Yuren, ZHANG Jiamei, DONG Hongbo, LI Mei, ZHAI Lihua. Determination of ultra-trace plutonium in atmospheric aerosols by inductively coupled plasma mass spectrometry (ICP-MS)[J]. Journal of Chinese Mass Spectrometry Society, 2002, 23(3): 151-155(in Chinese).
|
[31] |
金玉仁,张利兴,周国庆,王旭辉,夏兵,朱凤蓉,章连众,韩世钧. 两地土壤中的钚含量及同位素组成分析[J]. 分析化学,2004,32(10):1321-1324.JIN Yuren, ZHANG Lixing, ZHOU Guoqing, WANG Xuhui, XIA Bing, ZHU Fengrong, ZHANG Lianzhong, HAN Shijun. Determination of the concentration and isotopic composition of plutonium in soil[J]. Chinese Journal of Analytical Chemistry, 2004, 32(10): 1321-1324(in Chinese).
|
[32] |
吴剑锋,金玉仁,周国庆,张利兴. 逆流色谱分离感应耦合等离子质谱在线测量超痕量钚[J]. 分析化学,2005,33(10):1397-1400.WU Jianfeng, JIN Yuren, ZHOU Guoqing, ZHANG Lixing. Determination of ultra-trace plutonium by on-line high-speed countercurrent chromatography coupled with inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2005, 33(10): 1397-1400(in Chinese).
|
[33] |
金玉仁,李梅,李琳,高晋峰,倪惠云,周国庆. ICP-MS测量超痕量钚时质谱干扰的消除及水中钚的测定[J]. 核化学与放射化学,2004,26(1):6-10.JIN Yuren, LI Mei, LI Lin, GAO Jinfeng, NI Huiyun, ZHOU Guoqing. Elimination of spectral interferences for ICP-MS and determination of 239Pu in water[J]. Journal of Nuclear and Radiochemistry, 2004, 26(1): 6-10(in Chinese).
|
[34] |
粟永阳,李志明,周国庆,徐江,翟利华,黄能斌,曾实,朱凤蓉. ICP-MS在线定量分析气溶胶粒子的技术研究[J]. 分析测试学报,2009,22(4):436-439.SU Yongyang, LI Zhiming, ZHOU Guoqing, XU Jiang, ZHAI Lihua, HUANG Nengbin, ZENG Shi, ZHU Fengrong. Study of on-line chemical analysis of aerosol individual particles by ICP-MS[J]. Journal of Instrumental Analysis, 2009, 22(4): 436-439(in Chinese).
|
[35] |
粟永阳,李志明,周国庆,翟利华,徐江,黄能斌,曾实,朱凤蓉. 同位素气溶胶加入法ICP-MS在线分析单粒子中铀总量的技术研究[J]. 原子能科学技术,2010,44(3):272-277.SU Yongyang, LI Zhiming, ZHOU Guoqing, ZHAI Lihua, XU Jiang, HUANG Nengbin, ZENG Shi, ZHU Fengrong. On-line quantitative analysis of uranium in individual particle with ICP-MS using isotopic aerosol particles addition calibration method[J]. Atomic Energy Science and Technology, 2010, 44(3): 272-277(in Chinese).
|
[36] |
SU Y Y, LI Z M, DONG H B, ZHOU G Q, ZHAI L H, XU J, HUANG N B, ZENG S, ZHU F R. Preliminary study on aerosol particle addition calibration method for on-line quantitative analysis of airborne radioactive particles with ICP-MS[J]. Int J Environ Anal Chem, 2011, 91(5): 473-483.
|
[37] |
粟永阳,李志明,董宏波,徐江,任向军,翟利华,周国庆,李梅,伊小伟,朱凤蓉. 气溶胶直接进样电感耦合等离子体-质谱法快速测定环境气溶胶中239Pu[J]. 分析化学,2010,38(8):1139-1143.SU Yongyang, LI Zhiming, DONG Hongbo, XU Jiang, REN Xiangjun, ZHAI Lihua, ZHOU Guoqing, LI Mei, YI Xiaowei, ZHU Fengrong. Fast determination of Pu239 concentration in environmental radioactive aerosols by inductively couled plasma mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2010, 38(8): 1139-1143(in Chinese).
|
[38] |
LI Z M, SU Y Y, REN X J, XU J, ZHOU G Q, ZHAI L H, LIU L B, WEI G Y, HUANG N B. Direct determination of ultra-trace plutonium nanoparticles in downstream of a six-stage HEPA filter by inductively-coupled-plasma mass spectrometry: a field application[J]. Aerosol Sci Technol, 2011, 45(10): 1199-1205.
|
[39] |
SU Y Y, WANG W, LI Z M, DENG H, ZHOU G Q, XU J, REN X J. Direct detection and isotope analysis of individual particles in suspension by single particle mode MC-ICP-MS for nuclear safety[J]. J Anal At Spectrom, 2015, 30: 1184-1190.
|
[40] |
SU Y Y, LI Z M, LI M, YI X W, ZHOU G Q, XU J, ZHAI L H, WEI G Y, ZHU F R. Development of aerosol sample introduction interface coupled with ICP-MS for direct introduction and quantitative online monitoring of environmental aerosol[J]. Aerosol Sci Technol, 2014, 48(1): 99-107.
|
[41] |
粟永阳,李志明,任向军,徐江,曾实,朱凤蓉. 用于放射性气溶胶在线富集进样的狭缝虚拟撞击器的研制[J]. 辐射防护,2009,29(5):279-288.SU Yongyang, LI Zhiming, REN Xiangjun, XU Jiang, ZENG Shi, ZHU Fengrong. Development and laboratory characterization of a low-flow slip virtual impactors as a radioactive aerosol concentrator coupled with ICP-MS[J]. Radiation Protection, 2009, 29(5): 279-288(in Chinese).
|
[42] |
岳东宁,赵军,马燕云,徐江,粟永阳,汪伟,袁祥龙,李志明. 电感耦合等离子体离子源气体温度特性数值模拟分析[J]. 质谱学报,2017,38(5):521-525.YUE Dongning, ZHAO Jun, MA Yanyun, XU Jiang, SU Yongyang, WANG Wei, YUAN Xianglong, LI Zhiming. Numerical analysis of gas temperature in inductively coupled plasma ion sources[J]. Journal of Chinese Mass Spectrometry Society, 2017, 38(5): 521-525(in Chinese).
|
[43] |
SU Y Y, LI Z M, WANG W L, XU J, WANG W, LI X Z, YU Z. Feasibility study of particle detection and spectral diagnosis of plasma temperature through suspension introduction Ar-MPT-OES[J]. J Anal At Spectrom, 2017, 32(12): 2469-2475.
|
[44] |
SU Y Y, MARSH A, HADDRELL A E, LI Z M, REID J P. Evaporation kinetics of polyol droplets: determination of evaporation coefficients and diffusion constants[J]. J Geophys Res Atmos, 2017, 122: 12317-12334.
|
[45] |
SU Y Y, MILES R E H, LI Z M, REID J P, XU J. The evaporation kinetics of pure water droplets at varying drying rates and the use of evaporation rates to infer the gas phase relative humidity[J]. Phys Chem Chem Phys, 2018, 36: 23453-23466.
|
[46] |
GARCIA C C, MURTAZIN A, GROH S, HORVATIC V, NIEMAX K. Characterization of single Au and SiO2 nano- and microparticles by ICP-OES using monodisperse droplets of standard solutions for calibration[J]. J Anal At Spectrom, 2010, 25: 645-653.
|
[47] |
KAWAGUCHI H, FUKASAWA N, MIZUIKE A. Investigation of airborne particles by inductively coupled plasma emission spectrometry calibrated with monodisperse aerosols[J]. Spectrochim Acta Part B At Spectrosc, 1986, 41(12): 1277-1286.
|
[48] |
OLESIK J W, SMITH L J, WILLIAMSEN E J. Signal fluctuations due to individual droplets in inductively coupled plasma atomic emission spectrometry[J]. Anal Chem, 1989, 61(18): 2002-2008.
|
[49] |
NOMLRU T, KANECO S, TANAKA T, DAISUKE I, KAWAGUCHI H, VALLEE B T. Determination of calcium content in individual biological cells by inductively coupled plasma atomic emission spectrometry[J]. Anal Chem, 1994, 66(19): 3000-3004.
|
[50] |
HOBBS S E, OLESIK J W. Inductively coupled plasma mass spectrometry signal fluctuations due to individual aerosol droplets and vaporizing particles[J]. Anal Chem, 1992, 64(3): 274-283.
|
[51] |
OLESIK J W, FISTER J C. Incompletely desolvated droplets in argon inductively coupled plasmas: their number, original size and effect on emission intensities[J]. Spectrochim Acta Part B At Spectrosc, 1991, 46(6/7): 851-868.
|
[52] |
HINEMAN A, STEPHAN C. Effect of dwell time on single particle inductively coupled plasma mass spectrometry data acquisition quality[J]. J Anal At Spectrom, 2014, 29: 1252-1257.
|
[53] |
SHIGETA K, TRAUB H, PANNE U, OKINO A, ROTTMANN L, JAKUBOWSKI N. Application of a micro-droplet generator for an ICP-sector field mass spectrometer-optimization and analytical characterization[J]. J Anal At Spectrom, 2013, 28(5): 646-656.
|
[54] |
OLESIK J W, GRAY P J. Considerations for measurement of individual nanoparticles or microparticles by ICP-MS: determination of the number of particles and the analyte mass in each particle[J]. J Anal At Spectrom, 2012, 27(7): 1143-1155.
|
[55] |
GSCHWIND S, FLAMIGNI L, KOCH J, BOROVINSKAYA O, GROH S, NIEMAX K, GüNTHER D. Capabilities of inductively coupled plasma mass spectrometry for the detection of nanoparticles carried by monodisperse microdroplets[J]. J Anal At Spectrom, 2011, 26(6): 1166-1174.
|
[56] |
TANNER S D, ORNATSKY O, BANDURA D R, BARANOV V I. Multiplex bio-assay with inductively coupled plasma mass spectrometry: towards a massively multivariate single-cell technology[J]. Spectrochim Acta Part B At Spectrosc, 2007, 62(3): 188-195.
|
[57] |
YAU M H P, CHAN W T. A novel detection scheme of trace elements using ICP-MS[J]. J Anal At Spectrom, 2005, 20(11): 1197-1202.
|
[58] |
LABORDA F, JIMÉNEZ-LAMANA J, BOLEA E, CASTILLO J R. Selective identification, characterization and determination of dissolved silver(i) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry[J]. J Anal At Spectrom, 2011, 26: 1362-1371.
|
[59] |
TUORINIEMI J, CORNELIS G, HASSELLÖV M. Size discrimination and detection capabilities of single-particle ICP-MS for environmental analysis of silver nanoparticles[J]. Anal Chem, 2012, 84(2): 3965-3972.
|
[60] |
LABORDA F, JIMÉNEZ-LAMANA J, BOLEA E, CASTILLO J R. Critical considerations for the determination of nanoparticle number concentrations, size and number size distributions by single particle ICP-MS[J]. J Anal At Spectrom, 2013, 28: 1220-1232.
|
[61] |
LIU J, MURPHY K E, MACCUSPIE R I, WINCHESTER M R. Capabilities of single particle inductively coupled plasma mass spectrometry for the size measurement of nanoparticles: a case study on gold nanoparticles[J]. Anal Chem, 2014, 86(7): 3405-3414.
|
[62] |
PACE H E, ROGERS N J, JAROLIMEK C, COLEMAN V A, GRAY E P, HIGGINS C P, RANVILLE J F. Single particle inductively coupled plasma-mass spectrometry: a performance evaluation and method comparison in the determination of nanoparticle size[J]. Environ Sci Technol, 2012, 46: 12272-12280.
|
[63] |
MONTAÑO M D, MAJESTIC B J, JÄMTINGÅ K, WESTERHOFF P, RANVILLE J F. Methods for the detection and characterization of silica colloids by microsecond sp-ICP-MS[J].Anal Chem, 2016, 88(9): 4733-4741.
|
[64] |
OLESIK J W, HOBBS S E. Monodisperse dried microparticulate injector: a new tool for studying fundamental processes in inductively coupled plasmas[J]. Anal Chem, 1994, 66(20): 3371-3378.
|
[65] |
KAPELLIOS E A, PERGANTIS S A. Size and elemental composition of nanoparticles using ion mobility spectrometry with inductively coupled plasma mass spectrometry[J]. J Anal At Spectrom, 2012, 27(1): 21-24.
|
[66] |
LIN F H, MIYASHITA S I, INAGAKI K, LIU Y H, HSU I H. Evaluation of three different sample introduction systems for single-particle inductively coupled plasma mass spectrometry (spICP-MS) applications[J]. J Anal At Spectrom, 2019, 34(2): 401-406.
|
[67] |
MONTORO BUSTOS A R, PURUSHOTHAM K P, POSSOLO A, FARKAS N, VLADÁR A E, MURPHY K E, WINCHESTER M R. Validation of single particle ICP-MS for routine measurements of nanoparticle size and number size distribution[J]. Anal Chem, 2018, 90: 14376-14386.
|
[68] |
KIM S T, KIM H K, HAN S H, JUNG E C, LEE S. Determination of size distribution of colloidal TiO2 nanoparticles using sedimentation field-flow fractionation combined with single particle mode of inductively coupled plasma-mass spectrometry[J]. Microchem J, 2013, 110: 636-642.
|
[69] |
TUORINIEMI J, CORNELIS G, HASSELLÖV M. Improving the accuracy of single particle ICPMS for measurement of size distributions and number concentrations of nanoparticles by determining analyte partitioning during nebulisation[J]. J Anal At Spectrom, 2014, 29: 743-752.
|
[70] |
MIYASHITA S, MITSUHASHI H, FUJII S, TAKATSU A, INAGAKI K, FUJIMOTO T. High transport efficiency of nanoparticles through a total-consumption sample introduction system and its beneficial application for particle size evaluation in single-particle ICP-MS[J]. Anal Bioanal Chem, 2017, 409(6): 1531-1545.
|
[71] |
MIYASHITA S I, GROOMBRIDGE A S, FUJII S I, MINODA A, TAKATSU A, HIOKI A, CHIBA K, INAGAKI K. Highly efficient single-cell analysis of microbial cells by time-resolved inductively coupled plasma mass spectrometry[J]. J Anal At Spectrom, 2014, 29(9): 1598-1606.
|
[72] |
GROOMBRIDGE A S, MIYASHITA S, FUJII S, NAGASAWA K, OKAHASHI T, OHATA M, UMEMURA T, TAKATSU A, INAGAKI K, CHIBA K. High sensitive elemental analysis of single yeast cells (saccharomyces cerevisiae) by time-resolved inductively-coupled plasma mass spectrometry using a high efficiency cell introduction system[J]. Anal Sci, 2013, 29(6): 597-603.
|
[73] |
GSCHWIND S, HAGENDORFER H, FRICK D A, GÜNTHER D. Mass quantification of nanoparticles by single droplet calibration using inductively coupled plasma mass spectrometry[J].Anal Chem, 2013, 85(12): 5875-5883.
|
[74] |
TELGMANN L, METCALFE C D, HINTELMANN H. Rapid size characterization of silver nanoparticles by single particle ICP-MS and isotope dilution[J]. Journal of Analytical Atomic Spectrometry, 2014, 29: 1265-1272.
|
[75] |
SÖTEBIER C A, KUTSCHER D J, ROTTMANN L, JAKUBOWSKI N, PANNE U, BETTMER J. Combination of single particle ICP-QMS and isotope dilution analysis for the determination of size, particle number and number size distribution of silver nanoparticles[J]. J Anal At Spectrom, 2016, 31(10): 2045-2052.
|
[76] |
FRANZE B, STRENGE I, ENGELHARD C. Single particle inductively coupled plasma mass spectrometry: evaluation of three different pneumatic and piezo-based sample introduction systems for the characterization of silver nanoparticles[J]. J Anal At Spectrom, 2012, 27(7): 1074-1083.
|
[77] |
PACE H E, ROGERS N J, JAROLIMEK C, COLEMAN V A, HIGGINS C P, RANVILLE J F. Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry[J]. Anal Chem, 2011, 83(24): 9361-9369.
|
[78] |
MONTORO BUSTOS A R, PETERSEN E J, POSSOLO A, WINCHESTER M R. Post hoc interlaboratory comparison of single particle ICP-MS size measurements of NIST gold nanoparticle Reference materials[J]. Anal Chem, 2015, 87(17): 8809-8817.
|
[79] |
GSCHWIND S, AJA MONTES M D L, GüNTHER D. Comparison of sp-ICP-MS and MDG-ICP-MS for the determination of particle number concentration[J]. Anal Bioanal Chem, 2015, 407(14): 4035-4044.
|
[80] |
PETERS R, HERRERA-RIVERA Z, UNDAS A, Van Der LEE M, MARVIN H, BOUWMEESTER H, WEIGEL S. Single particle ICP-MS combined with a data evaluation tool as a routine technique for the analysis of nanoparticles in complex matrices[J]. J Anal At Spectrom, 2015, 30(6): 1274-1285.
|
[81] |
TODOL J L, MAESTRE S, MORA J, CANALS A, HERNANDIS V. Comparison of several spray chambers operating at very low liquid flow rates in inductively coupled plasma atomic emission spectrometry[J]. Fresenius J Anal Chem, 2000, 368(8): 773-779.
|
[82] |
MAESTRE S, MORA J, TODOL J L, CANALS A. Evaluation of several commercially available spray chambers for use in inductively coupled plasma atomic emission spectrometry[J]. J Anal At Spectrom, 1999, 14(1): 61-67.
|
[83] |
HADIOUI M, PEYROT C, WILKINSON K J. Improvements to single particle ICPMS by the online coupling of ion exchange resins[J]. Anal Chem, 2014, 86(10): 4668-4674.
|
[84] |
TAN J, LIU J, LI M, HADRI H E, HACKLEY V A, ZACHARIAH M R. Electrospray-differential mobility hyphenated with single particle inductively coupled plasma mass spectrometry for characterization of nanoparticles and their aggregates[J]. Anal Chem, 2016, 88(17):8548-8555.
|
[85] |
SLANINA J, ten BRINK H M, OTJES R P, EVEN A, JONGEJUAN P, KHLYSTOV A, WAIJERS-IJPELAAN A, HU M, LU Y. The continuous analysis of nitrate and ammonium in aerosols by the steam jet aerosol collector (SJAC): extension and validation of the methodology[J]. Atmos Environ, 2001, 35(13): 2319-2330.
|
[86] |
KHLYSTOV A, WYERS G P, SLANINA J. The steam-jet aerosol collector[J]. Atmos Environ, 1995, 29(17): 2229-2234.
|
[87] |
TREBS I, MEIXNER F X, SLANINA J, OTJES R, JONGEJAN P, ANDREAE M O, SLANINA J, OTJES R, MEIXNER F X, ANDREAE M O, TREBS I. Real-time measurements of ammonia, acidic trace gases and water-soluble inorganic aerosol species at a rural site in the Amazon Basin[J]. Atmos Chem Phys Discuss, 2010, 4: 1203-1246.
|
[88] |
WEBER R J, ORSINI D, DAUN Y, LEE Y N, KLOTZ P J, BRECHTEL F. A particle-into liquid collector for rapid measurement of aerosol bulk chemical composition[J]. Aerosol Sci Technol, 2001, 35(3): 718-727.
|
[89] |
KANECO S, NOMIZU T, TANAKA T, MIZUTANI N, KAWAGUCHI H. Optimization of operating conditions in individual airborne particle analysis by inductively coupled plasma mass spectrometry[J]. Anal Sci, 1995, 11: 835-840.
|
[90] |
MONTAÑO M D, BADIEI H R, BAZARGAN S, RANVILLE J F. Improvements in the detection and characterization of engineered nanoparticles using sp-ICP-MS with microsecond dwell times[J]. Environ Sci Nano, 2014, 1: 338-346.
|
[91] |
SANNAC S. Single particle analysis of nanomaterials using the Agilent7900 ICP-MS application note[M]. Agilent Inc, 2015.
|
[92] |
STRENGE I, ENGELHARD C. Capabilities of fast data acquisition with microsecond time resolution in inductively coupled plasma mass spectrometry and identification of signal artifacts from millisecond dwell times during detection of single gold nanoparticles[J]. J Anal At Spectrom, 2016, 31: 135-144.
|
[93] |
BOROVINSKAYA O, HATTENDORF B, TANNER M, GSCHWIND S, GÜNTHER D. A prototype of a new inductively coupled plasma time-of-flight mass spectrometer providing temporally resolved, multi-element detection of short signals generated by single particles and droplets[J]. J Anal At Spectrom, 2013, 28(2): 226-233.
|
[94] |
TUORINIEMI J, CORNELIS G, HASSELLÖV M. A new peak recognition algorithm for detection of ultra-small nano-particles by single particle ICP-MS using rapid time resolved data acquisition on a sector-field mass spectrometer[J]. J Anal At Spectrom, 2015, 30: 1723-1729.
|
[95] |
YANG L. Accurate and precise determination of isotopic rations by MC-ICP-MS: a review[J]. Mass Spectrom Rev, 2009, 28(6): 990-1011.
|
[96] |
GUILHAUS M. Essential elements of time-of-flight mass spectrometry in combination with the inductively coupled plasma ion source[J]. Spectrochim Acta Part B At Spectrosc, 2000, 55: 1511-1525.
|
[97] |
PRAETORIUS A, GUNDLACH-GRAHAM A, GOLDBERG E, FABIENKE W, NAVRATILOVA J, GONDIKAS A, KAEGI R, GÜNTHER D, HOFMANN T, Van Der KAMMER F. Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils[J]. Environ Sci Nano, 2017, 4: 307-314.
|
[98] |
NOMIZU T, NAKASHIMA H, HOTTA Y, TANAKA T, KAWAGUCHI H. Simultaneous measurement of the elemental content and size of airborne particles by inductively coupled plasma emission spectrometry combined with the laser light-scattering method[J]. Anal Sci, 1992, 8: 527-531.
|
[99] |
WIEDENSOHLET A, ORSINI D, COVERT D S, COFFMANN D, CANTRELL W, HAVLICEK M, BRECHTEL F J, RUSSELL L M, WEBER R J, GRAS J, HUDSON J G, LITCHY M. Intercomparison study of the size-dependent counting efficiency of 26 condensation particle counters[J]. Aerosol Sci Technol, 1997, 27(2): 224-242.
|
[100] |
PERGANTIS S A, JONES-LEPP T L, HEITHMAR E M. Hydrodynamic chromatography online with single particle-inductively coupled plasma mass spectrometry for ultratrace detection of metal-containing nanoparticles[J]. Anal Chem, 2012, 84(15): 6454-6462.
|
[101] |
HO K S, LUI K O, LEE K H, CHAN W T. Considerations of particle vaporization and analyte diffusion in single-particle inductively coupled plasma-mass spectrometry[J]. Spectrochim Acta Part B At Spectrosc, 2013, 89: 30-39.
|
[102] |
LEE S, BI X, REED R B, RANVILLE J F, HERCKES P, WESTERHOFF P. Nanoparticle size detection limits by single particle ICP-MS for 40 elements[J]. Environ Sci Technol, 2014, 48(17): 10291-10300.
|
[103] |
谢波,龙兴贵. 美国国家实验室钚气溶胶研究进展[J]. 科技导报,2017,35:115-124.XIE Bo, LONG Xinggui. A review of plutonium aerosol research in some American national laboratories[J]. Science and Technology Review, 2017, 35: 115-124(in Chinese).
|
[104] |
谢波,熊旺,胡胜,龙兴贵. 钚气溶胶的形成机理[J]. 辐射防护通讯,2017,37(4):1-11.XIE Bo, XIONG Wang, HU Sheng, LONG Xinggui. The formation of plutonium aerosol[J]. Radiation Protection Bulletin, 2017, 37(4): 1-11(in Chinese).
|
[105] |
LI H B, JIA M Y, LI G S, WANG Y D. A continuous plutonium aerosol monitor for use in high radon environments[J]. Radiat Prot Dosimetry, 2012, 148(2): 258-262.
|
[106] |
GB 8703—88辐射防护规定[S]. 北京:中国标准出版社,1988.
|
[107] |
McDOWELL W J, SEELEY F G. Penetration of HEPA filters by alpha recoil aerosols[J]. Health Physics, 1977, 32(5): 445-451.
|
[108] |
YAMADA Y, KOIZUMI A, MIYAMOTO K. Re-entrainment of 239PuO2 particles captured on HEPA filter fibres[J]. 1999, 82(1): 25-29.
|
[109] |
CHENG Y S, HOLMES T D, GEORGE T G, MARLOW W H. Size measurement of plutonium particles from internal sputtering into air[J]. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms, 2005, 234(3): 219-225.
|
[110] |
MOODY K J, GRANT P M, HUTCHEON I D. Nuclear forensic analysis[M]. 2nd. CRC Press Taylor & Francis Group, Boca Raton, FL, 2015.
|
[111] |
KERSTING A B, EFURD D W, FINNEGAN D L, ROKOP D J, SMITH D K, THOMPSON J L. Migration of plutonium in ground water at the Nevada Test Site[J]. Nature, 1999, 397: 56-59.
|
[112] |
CORNELIS G, HASSELLÖV M. A signal deconvolution method to discriminate smaller nanoparticles in single particle ICP-MS[J]. J Anal At Spectrom, 2014, 29: 134-144.
|