拟除虫菊酯类农药在NCI源和EI源中的质谱行为

连增维, 倪建成, 龚小丽, 朱宏斌, 胡银凤

连增维, 倪建成, 龚小丽, 朱宏斌, 胡银凤. 拟除虫菊酯类农药在NCI源和EI源中的质谱行为[J]. 质谱学报, 2021, 42(3): 240-252. DOI: 10.7538/zpxb.2020.0092
引用本文: 连增维, 倪建成, 龚小丽, 朱宏斌, 胡银凤. 拟除虫菊酯类农药在NCI源和EI源中的质谱行为[J]. 质谱学报, 2021, 42(3): 240-252. DOI: 10.7538/zpxb.2020.0092
LIAN Zeng-wei, NI Jian-cheng, GONG Xiao-li, ZHU Hong-bin, HU Yin-feng. Mass Spectrometry Behavior of Pyrethroid Pesticides in NCI and EI Sources[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(3): 240-252. DOI: 10.7538/zpxb.2020.0092
Citation: LIAN Zeng-wei, NI Jian-cheng, GONG Xiao-li, ZHU Hong-bin, HU Yin-feng. Mass Spectrometry Behavior of Pyrethroid Pesticides in NCI and EI Sources[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(3): 240-252. DOI: 10.7538/zpxb.2020.0092
连增维, 倪建成, 龚小丽, 朱宏斌, 胡银凤. 拟除虫菊酯类农药在NCI源和EI源中的质谱行为[J]. 质谱学报, 2021, 42(3): 240-252. CSTR: 32365.14.zpxb.2020.0092
引用本文: 连增维, 倪建成, 龚小丽, 朱宏斌, 胡银凤. 拟除虫菊酯类农药在NCI源和EI源中的质谱行为[J]. 质谱学报, 2021, 42(3): 240-252. CSTR: 32365.14.zpxb.2020.0092
LIAN Zeng-wei, NI Jian-cheng, GONG Xiao-li, ZHU Hong-bin, HU Yin-feng. Mass Spectrometry Behavior of Pyrethroid Pesticides in NCI and EI Sources[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(3): 240-252. CSTR: 32365.14.zpxb.2020.0092
Citation: LIAN Zeng-wei, NI Jian-cheng, GONG Xiao-li, ZHU Hong-bin, HU Yin-feng. Mass Spectrometry Behavior of Pyrethroid Pesticides in NCI and EI Sources[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(3): 240-252. CSTR: 32365.14.zpxb.2020.0092

拟除虫菊酯类农药在NCI源和EI源中的质谱行为

Mass Spectrometry Behavior of Pyrethroid Pesticides in NCI and EI Sources

  • 摘要: 通过分析19种拟除虫菊酯类农药(pyrethroid pesticides, PyPs)在负化学离子源(NCI)和电子轰击离子源(EI)中的碎片离子信息,得出每种农药在不同离子源中的质谱行为差异。在NCI源中,PyPs获得1个热电子,形成负离子后不稳定而发生热裂解,与酯基相连的碳氧键断裂形成菊酯烷酸根离子,再脱去中性分子(如CO2、HF、HCl、HCF3等)形成各种碎片离子。一般情况下,含卤原子越多的PyPs,其在NCI源的响应越高。在EI源中,PyPs裂解规律为:1) 与羰基相连的碳氧键发生α-断裂脱去1分子CO,得到含环丙烷结构的特征碎片离子;2) 发生六元环的氢原子重排,当含有苄基苯基醚且甲基上有氰基取代基的PyPs,易形成m/z 181、208特征碎片离子,而不含氰基的PyPs易形成m/z 183特征碎片离子。
    Abstract: The mass spectrometry behaviors of 19 kinds of pyrethroid pesticides (PyPs) in different ion sources were obtained by analyzing and comparing their ion fragment information in negative chemical ionization (NCI) and electron impact ionization (EI). In this work, the fragment information of precursor and product ions of PyPs in NCI and EI sources was obtained by different instrument acquisition modes. In NCI source, it was easy to lose one hydrogen halide molecule to form a secondary ion when PyPs with cyclopropane structure, such as bifenthrin and cypermethrin. And, the stronger electronegativity of functional group connected to the cyclopropane, the stronger its ionic strength. It was easy to lose one CO2 to form secondary ions for the others that without cyclopropane structure, such as flucythrinate and fluvalinate. PyPs obtained a hot electron in NCI source, which was unstable after forming an anion and thermal cracking occurs. After cleavage of carbon oxygen bond linked to ester group, a negative pyrethroid alkane radical was formed, and then neutral molecules (such as CO2, HF, HCl, HCF3, etc.) were lost to form various fragment ions. In EI source, the ester or benzyl positions of PyPs were prone to cleavage. When the ester group was broken, some PyPs would produce RCO+, the common fragment ion of carboxylic acid esters, such as benfluthrin and bifenthrin. However, most PyPs only showed fragment ion R+ on mass spectrum, the ion RCO+ was not been seen, such as cyfluthrin and flucythrinate. First, the C—O bond of PyPs connected to the carbonyl group underwent α breaking, and then a molecule of CO was lost resulting in a characteristic ion fragment containing a cyclopropane structure. The second was that a hydrogen atom rearrangement of six membered ring occurs after one electron was lost on benzene ring. The m/z 181 and m/z 208 were formed when it contained benzyl phenyl ether and the methyl group had a substituted cyano group, while the m/z 183 was formed when it didn't contain a substituted cyano group.
  •   2959

  • [1] KATSUDA Y. Development and future prospects for pyrethroid chemistry[J]. Pesticide Science, 1999, 55(8): 775-782.
    [2] 刘尚钟,王敏,陈馥衡. 拟除虫菊酯类农药的研究和展望[J]. 农药,2004,43(7):289-293.
    LIU Shangzhong, WANG Min, CHEN Fuheng. Research progress and development prospect of pyrethroid pesticide[J]. Chinese Joumal of Pesiticides, 2004, 43(7): 289-293(in Chinese).
    [3] 农业农村部农药检定所药情信息处. 农药登记数据[DB/OL]. 中华人民共和国农业农村部农药检定所,(2020-05-22)[2020-07-01]. http:∥www.icama.org.cn/hysj/index.jhtml.
    [4] 袁红霞,秦粉菊. 环境激素拟除虫菊酯类农药的内分泌干扰效应[J]. 安徽农业科学,2007,35(33):10714-10715.
    YUAN Hongxia, QIN Fenju. Endocrine disrupting effects of pyrethroid pesticides[J]. Journal of Anhui Agricultural Sciences, 2007, 35(33): 10714-10715(in Chinese).
    [5] 赵颖. 拟除虫菊酯生殖和神经毒性及补肾健脾中药干预作用的研究[D]. 广州:广州中医药大学,2005.
    [6] ROUSIS N I, ZUCCATO E, CASTIGLIONI S. Wastewater-based epidemiology to assess human exposure to pyrethroid pesticides[J]. Environment International, 2017, 99: 213-220.
    [7] 贝峰,周杨学. MSPD/GPC-GC-NCI/MS法测定牛肉中10种菊酯类农药残留方法的研究[J]. 山东畜牧兽医,2014,35(9):12-13.
    BEI Feng, ZHOU Yangxue. MSPD/GPC-GC-NCI/MS method to determine the residual method of 10 pyrethroid pesticides residue in beef[J]. Shandong Journal of Animal Science and Veterinary Medicine, 2014, 35(9): 12-13(in Chinese).
    [8] 沈伟健,曹孝文,刘一军,张睿,范欣,赵增运,沈崇钰,吴斌. 气相色谱-负化学源质谱法测定蔬菜中17种拟除虫菊酯类农药残留量[J]. 色谱,2012,30(11):1172-1177.
    SHEN Weijian, CAO Xiaowen, LIU Yijun, ZHANG Rui, FAN Xin, ZHAO Zengyun, SHEN Chongyu, WU Bin. Determination of 17 pyrethroid pesticide residues in vegetables by gas chromatography-mass spectrometry with negative chemical ionization[J]. Chinese Journal of Chromatography, 2012, 30(11): 1172-1177.
    [9] GB 2763—2019. 食品安全国家标准 食品中农药最大残留限量[S]. 北京:中国农业出版社,2019.
    [10] MAHUGIJA JOHN A M, KHAMIS F A, LUGWISHA E H J. Determination of levels of organochlorine, organophosphorus, and pyrethroid pesticide residues in vegetables from markets in Dar es Salaam by GC-MS[J]. International Journal of Analytical Chemistry, 2017, doi: 10.1155/2017/4676724.
    [11] 王青,黄铮. 食品中拟除虫菊酯类农药残留检测前处理技术研究进展[J]. 食品研究与开发,2018,39(11):186-191.
    WANG Qing, HUANG Zheng. The study on the development of pretreatment techniques about the detection of pyrethroid pesticides residue in the food[J]. Food Research and Development, 2018, 39(11): 186-191(in Chinese).
    [12] 刘凤海,荣胜忠,牛莹莹,石文秀,潘洪志,王爱杰. 拟除虫菊酯类农药残留检测的研究进展[J]. 环境与健康,2018,35(8):741-744.
    LIU Fenghai, RONG Shengzhong, NIU Yingying, SHI Wenxiu, PAN Hongzhi, WANG Aijie. Determination of synthetic pyrethriods pesticide residue: a review of recent studies[J]. Journal of Environment and Health, 2018, 35(8): 741-744(in Chinese).
    [13] BUDZIKIEWICZ H. Negative chemical ionization (NCI) of organic compounds[J]. Mass Spectrometry Reviews, 2010, 5(4): 345-380.
    [14] 王素娟. 白桦叶化学成分及GC-NCIMS测定中药中农药残留量的研究[D]. 沈阳:沈阳药科大学,2002.
    [15] 沈伟健,徐锦忠,赵增运,丁涛,蒋原,储晓刚,沈崇钰. 气相色谱-负化学源质谱法测定蔬菜中11种醚类除草剂残留[J]. 分析化学,2008,36(5):663-667.
    SHEN Weijian, XU Jinzhong, ZHAO Zengyun, DING Tao, JIANG Yuan, CHU Xiaogang, SHEN Chongyu. Determination of 11 kinds of ether herbicide residues in vegetables by gas chromatography-negative chemical ionization mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2008, 36(5): 663-667(in Chinese).
    [16] 李燕妹,连增维. QuEChERS结合气相色谱-负化学源质谱法测定蔬菜水果中37种农药残留[J]. 食品安全质量检测学报,2020,11(15):5074-5079.
    LI Yanmei, LIAN Zengwei. Determination of 37 pesticide residues in vegetables and fruits by QuEChERS coupled with gas chromatography negative chemical ionization mass spectrometry[J]. Journal of Food Safety & Quality, 2020, 11(15): 5074-5079(in Chinese).
    [17] RAINA R, HALL P. Comparison of gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry with electron ionization and negative-ion chemical ionization for analyses of pesticides at trace levels in atmospheric samples[J]. Analytical Chemistry Insights, 2008(3): 111-125.
    [18] HU'SKOVÁ R, MATISOVÁ E, SVORC L, MOCÁK J, KIRCHNER M. Comparison of negative chemical ionization and electron impact ionization in gas chromatography-mass spectrometry of endocrine disrupting pesticides[J]. Journal of Chromatography A, 2009, 1 216(24): 4927-4932.
    [19] 李娇,范志先. 拟除虫菊酯类杀虫剂质谱裂解规律的研究[J]. 现代农药,2015,14(2):31-34.
    LI Jiao, FAN Zhixian. Fragmentation pattens of mass spectra for pyrethroid insecticides[J]. Modern Agrochemicals, 2015, 14 (2): 31-34(in Chinese).
    [20] 李娇. 四氟苯菊酯与苯醚氰菊酯的质谱裂解机理研究[J]. 农药科学与管理,2015,36(5):25-27.
    LI Jiao. Study on mass spectrum fragmentation mechanism for transfluthrin and cyphenothrin[J]. Pesticide Science and Administration, 2015, 36(5): 25-27(in Chinese).
图(1)
计量
  • 文章访问数:  631
  • HTML全文浏览量:  0
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 刊出日期:  2021-05-19

目录

    /

    返回文章
    返回