黄烷-3-醇类化合物及其代谢产物的靶向定量方法研究

刘若男, 陈婉冰, 杨宏, 胡亦清, 鲁群, 董军, 刘睿

刘若男, 陈婉冰, 杨宏, 胡亦清, 鲁群, 董军, 刘睿. 黄烷-3-醇类化合物及其代谢产物的靶向定量方法研究[J]. 质谱学报, 2022, 43(1): 67-77. DOI: 10.7538/zpxb.2021.0021
引用本文: 刘若男, 陈婉冰, 杨宏, 胡亦清, 鲁群, 董军, 刘睿. 黄烷-3-醇类化合物及其代谢产物的靶向定量方法研究[J]. 质谱学报, 2022, 43(1): 67-77. DOI: 10.7538/zpxb.2021.0021
LIU Ruo-nan, CHEN Wan-bing, YANG Hong, HU Yi-qing, LU Qun, DONG Jun, LIU Rui. Development of Target Quantitative Methods of Flavan-3-ols and their Metabolites[J]. Journal of Chinese Mass Spectrometry Society, 2022, 43(1): 67-77. DOI: 10.7538/zpxb.2021.0021
Citation: LIU Ruo-nan, CHEN Wan-bing, YANG Hong, HU Yi-qing, LU Qun, DONG Jun, LIU Rui. Development of Target Quantitative Methods of Flavan-3-ols and their Metabolites[J]. Journal of Chinese Mass Spectrometry Society, 2022, 43(1): 67-77. DOI: 10.7538/zpxb.2021.0021
刘若男, 陈婉冰, 杨宏, 胡亦清, 鲁群, 董军, 刘睿. 黄烷-3-醇类化合物及其代谢产物的靶向定量方法研究[J]. 质谱学报, 2022, 43(1): 67-77. CSTR: 32365.14.zpxb.2021.0021
引用本文: 刘若男, 陈婉冰, 杨宏, 胡亦清, 鲁群, 董军, 刘睿. 黄烷-3-醇类化合物及其代谢产物的靶向定量方法研究[J]. 质谱学报, 2022, 43(1): 67-77. CSTR: 32365.14.zpxb.2021.0021
LIU Ruo-nan, CHEN Wan-bing, YANG Hong, HU Yi-qing, LU Qun, DONG Jun, LIU Rui. Development of Target Quantitative Methods of Flavan-3-ols and their Metabolites[J]. Journal of Chinese Mass Spectrometry Society, 2022, 43(1): 67-77. CSTR: 32365.14.zpxb.2021.0021
Citation: LIU Ruo-nan, CHEN Wan-bing, YANG Hong, HU Yi-qing, LU Qun, DONG Jun, LIU Rui. Development of Target Quantitative Methods of Flavan-3-ols and their Metabolites[J]. Journal of Chinese Mass Spectrometry Society, 2022, 43(1): 67-77. CSTR: 32365.14.zpxb.2021.0021

黄烷-3-醇类化合物及其代谢产物的靶向定量方法研究

Development of Target Quantitative Methods of Flavan-3-ols and their Metabolites

  • 摘要: 黄烷-3-醇类化合物作为重要的膳食多酚,其生物利用度不仅局限于母体化合物,更重要的是其经过体内肠道微生物代谢后的产物。为了明确体内代谢情况及代谢产物对生物利用度的贡献,本研究探究了黄烷-3-醇类化合物及其代谢产物的靶向定量分析方法。根据各化合物子离子响应值的差异,确定其在混合标准溶液中适合的浓度,并建立了超高效液相色谱-三重四极杆-串联质谱(UHPLC-QQQ-MS)定量分析方法,在15 min分析时间内所有化合物的分离度良好,并有适宜的响应值。方法学验证结果表明,定量化合物具有良好的线性关系;并以尿液、粪便和血浆为研究材料考察方法的稳定性,日内和日间精密度RSD值均在15%以下,基质效应介于±20%之间,回收率在70%~120%之间。该方法快速、灵敏、准确、稳定,可用于黄烷-3-醇类化合物在体内的靶向定量研究。
    Abstract: Flavan-3-ols are important dietary polyphenol, their bioavailability are not only limited to the parent compound, but also the metabolites after the intestinal microbial metabolism in vivo. Aimed to identify the in vivo metabolism and the contribution of metabolites to bioavailability, the quantitative analysis methods of dietary flavan-3-ols and their metabolites were researched. According to the difference response values of the product ions of each compound, the appropriate concentration in the mixed standard was determined, and the quantitative analysis method of ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry (UHPLC-QQQ-MS) was established. All compounds had good resolution and appropriate response values within analysis time of 15 min. The method validation results showed that most of the quantitative compounds had good linearity. Urine, feces and plasma were used as samples to investigate the intra-day and inter-day precision of the method. The RSD value of the method was below 15%, the matrix effect was within ±20%, and the recovery was mainly between 70% and 120%. The method is fast, sensitive, accurate and stable, which can be used as a method for targeted quantitative research of flavan-3-ol compounds in vivo.
  •   3047

  • [1] KIM M Y, KIM H J, LEE Y Y, KIM M H, LEE J Y, KANG M S, KOO B C, LEE B W. Antioxidant and anti-inflammatory effects of Peanut (Arachishypogaea L.) skin extracts of various cultivars in oxidative-damaged HepG2 cells and LPS-induced raw 264.7 macrophages[J]. Food Science & Nutrition, 2020, 9(4): 973-984.
    [2] NAWROT-HADZIK I, MATKOWSKI A, KUBASIEWICZ-ROSS P, HADZIK J. Proanthocyanidins and flavan-3-ols in the prevention and treatment of periodontitis-immunomodulatory effects, animal and clinical studies[J]. Nutrients, 2021, 13(1): 239-271.
    [3] SARRIA B, GOMEZ-JUARISTI M, MARTINEZ LOPEZ S, GARCIA CORDERO J, BRAVO L, MATEOS BRIZ M R. Cocoa colonic phenolic metabolites are related to HDL-cholesterol raising effects and methylxanthine metabolites and insoluble dietary fibre to antiinflammatory and hypoglycemic effects in humans[J]. Peer J, 2020, 8: e9953.
    [4] 韩富亮,张予林,靳国杰,梁艳英,荆淑莹,姜小月. 葡萄酒花色苷的吸收机制[J]. 中国食品学报,2016,16(11):182-188.
    HAN Fuliang, ZHANG Yulin, JIN Guojie, LIANG Yanying, JING Shuying, JIANG Xiaoyue. The absorption mechanism of anthocyaninsin wine[J]. Jouranl of Chinese Institute of Food Science and Technology, 2016,16(11): 182-188(in Chinese).
    [5] MONAGAS M, URPI-SARDA M, SANCHEZ-PATAN F, LLORACH R, GARRIDO I, GOMEZ-CORDOVES C, ANDRES-LACUEVA C,BARTOLOME B. Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites[J]. Food Funct, 2010(1): 233-253.
    [6] KAY C D, PEREIRACARO G, LUDWIG I A, CLIFFORD M N, CROZIER A. Anthocyanins and flavanones are more bioavailable than previously perceived: a review of recent evidence[J]. Annu Rev Food Sci Technol, 2017, 8: 155-180.
    [7] AMIN H P, CZANK C, RAHEEM S, ZHANG Q, BOTTING N P, CASSIDY A,KAY C D. Anthocyanins and their physiologically relevant metabolites alter the expression of IL-6 and VCAM-1 in CD40L and oxidized LDL challenged vascular endothelial cells[J]. Mol Nutr Food Res, 2015, 59: 1095-1106.
    [8] WARNER E F, ZHANG Q, RAHEEM K S, O′HAGAN D, O′CONNELL M A, KAY C D. Common phenolic metabolites of flavonoids, but not their unmetabolized precursors, reduce the secretion of vascular cellular adhesion molecules by human endothelial cells[J]. J Nutr, 2016, 146(3): 465-473.
    [9] BORGES G, OTTAVIANI J I, Van der HOOFT J J J, SCHROETER H, CROZIER A. Absorption, metabolism, distribution and excretion of (-)epicatechin: a review of recent findings[J]. Molecular Aspects of Medicine, 2018, 61: 18-30.
    [10] OU K, GU L. Absorption and metabolism of proanthocyanidins[J]. J Funct Foods, 2014, 7: 43-53.
    [11] SERRA A, MACIA A, ROMERO M P, REGUANT J, ORTEGA N, MOTILVA M J. Metabolic pathways of the colonic metabolism of flavonoids (flavonols, flavones and flavanones) and phenolic acids[J]. Food Chemistry, 2012, 130(2): 383-393.
    [12] KAHLE K, KEMPF M, SCHREIER P, SCHEPPACH W, SCHRENK D, KAUTENBURGER T, HECKER D, HUEMMER W, ACKERMANN M, RICHLING E. Intestinal transit and systemic metabolism of apple polyphenols[J]. Eur J Nutr, 2011, 50: 507-522.
    [13] ZHOU J, YIN Y. Strategies for large-scale targeted metabolomics quantification by liquid chromatography-mass spectrometry[J]. Analyst, 2016, 141(23): 6362-6373.
    [14] 李中权,张芳,苏越,郭寅龙. 质谱直接定量分析技术的应用进展[J]. 质谱学报,2018,39(2):129-140.
    LI Zhongquan, ZHANG Fang, SU Yue, GUO Yinlong. Advances in direct quantification analysis by mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(2): 129-140(in Chinese).
    [15] CHEN S, KONG H, LU X, LI Y, YIN P, ZENG Z, XU G. Pseudotargeted metabolomics method and its application in serum biomarker discovery for hepatocellular carcinoma based on ultra high-performance liquid chromatography/triple quadrupole mass spectrometry[J]. Anal Chem, 2013, 85(17): 8326-8333.
    [16] CHEN W, GONG L, GUO Z, WANG W, ZHANG H, LIU X, YU S, XIONG L, LUO J. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics[J]. Mol Plant, 2013(6): 1769-1780.
    [17] 沈枫林,熊悦婷,刘晓慧,杨芃原. 基于质谱的蛋白质绝对定量研究策略和建议[J]. 质谱学报,2021,42(2):101-117.
    SHEN Fenglin, XIONG Yueting, LIU Xiaohui, YANG Pengyuan. Strategies and recommendations for the absolute quantification of target proteins based on LC-MS/MS[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(2): 101-117(in Chinese).
    [18] 蒲倩伦,廖晗,陈艳华,高杨,丁贤,贺玖明,张瑞萍,再帕尔·阿不力孜. 血浆代谢组同时定性定量分析方法研究[J]. 质谱学报,2020,41(4):297-306.
    PU Qianlun, LIAO Han, CHEN Yanhua, GAO Yang, DING Xian, HE Jiuming, ZHANG Ruiping, ZEPER Ablize. Development of simultaneous qualitation and quantification of plasma metabolome based on sequential windowed acquisition of all theoretical fragment ions (SWATH)[J]. Journal of Chinese Mass Spectrometry Society, 2020, 41(4): 297-306(in Chinese).
    [19] BASILIERE S, KERRIGAN S. Identification of metabolites and potential biomarkers of kratom in urine[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2020, 1 140: 121 971.
    [20] CASTELLO F, COSTABILE G, BRESCIANI L, TASSOTTI M, NAVIGLIO D, LUONGO D, CICIOLA P, VITALE M, VETRANI C, GALAVERNA G, BRIGHENTI F, GIACCO R, DEL RIO D, MENA P. Bioavailability and pharmacokinetic profile of grape pomace phenolic compounds in humans[J]. Arch Biochemi Biophys, 2018, 646: 1-9.
    [21] LUDWIG I A, MENA P, CALANI L, BORGES G, PEREIRA-CARO G, BRESCIANI L, DEL R D, LEAN M E J, CROZIER A. New insights into the bioavailability of red raspberry anthocyanins and ellagitannins[J]. Free Radical Biology and Medicine, 2015, 89: 758-769.
    [22] van DUYNHOVEN J, van der HOOFT J J, van DORSTEN F A, PETERS S, FOLTZ M, GOMEZ-ROLDAN V, VERVOORT J, de VOS R C, JACOBS D M. Rapid and sustained systemic circulation of conjugated gut microbial catabolites after single-dose black tea extract consumption[J]. J Proteome Res, 2014, 13(5): 2668-2678.
    [23] PEREIRA-CARO G, ORDÓÑEZ J L, LUDWIG I, GAILLET S, MENA P, DEL RIO D, ROUANET J M, BINDON K A, MORENO-ROJAS J M, CROZIER A. Development and validation of an UHPLC-HRMS protocol for the analysis of flavan-3-ol metabolites and catabolites in urine, plasma and feces of rats fed a red wine proanthocyanidin extract[J]. Food Chem, 2018, 252: 49-60.
    [24] QUIFER-RADA P, MARTINEZ-HUELAMO M, LAMUELA-RAVENTOS R M. Is enzymatic hydrolysis a reliable analytical strategy to quantify glucuronidated and sulfated polyphenol metabolites in human fluids[J]. Food Funct, 2017, 8(7): 2419-2424.
图(1)
计量
  • 文章访问数:  751
  • HTML全文浏览量:  2
  • PDF下载量:  414
  • 被引次数: 0
出版历程
  • 刊出日期:  2022-01-19

目录

    /

    返回文章
    返回