质谱技术在G-四链体研究中的进展

谭江, 李亦舟, 周江

谭江, 李亦舟, 周江. 质谱技术在G-四链体研究中的进展[J]. 质谱学报, 2021, 42(5): 914-925. DOI: 10.7538/zpxb.2021.0111
引用本文: 谭江, 李亦舟, 周江. 质谱技术在G-四链体研究中的进展[J]. 质谱学报, 2021, 42(5): 914-925. DOI: 10.7538/zpxb.2021.0111
TAN Jiang, LI Yi-zhou, ZHOU Jiang. Progress of Study on G-quadruplex by Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5): 914-925. DOI: 10.7538/zpxb.2021.0111
Citation: TAN Jiang, LI Yi-zhou, ZHOU Jiang. Progress of Study on G-quadruplex by Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5): 914-925. DOI: 10.7538/zpxb.2021.0111
谭江, 李亦舟, 周江. 质谱技术在G-四链体研究中的进展[J]. 质谱学报, 2021, 42(5): 914-925. CSTR: 32365.14.zpxb.2021.0111
引用本文: 谭江, 李亦舟, 周江. 质谱技术在G-四链体研究中的进展[J]. 质谱学报, 2021, 42(5): 914-925. CSTR: 32365.14.zpxb.2021.0111
TAN Jiang, LI Yi-zhou, ZHOU Jiang. Progress of Study on G-quadruplex by Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5): 914-925. CSTR: 32365.14.zpxb.2021.0111
Citation: TAN Jiang, LI Yi-zhou, ZHOU Jiang. Progress of Study on G-quadruplex by Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5): 914-925. CSTR: 32365.14.zpxb.2021.0111

质谱技术在G-四链体研究中的进展

Progress of Study on G-quadruplex by Mass Spectrometry

  • 摘要: G-四链体是通过富含鸟嘌呤的DNA或RNA序列形成的非典型核酸二级结构,存在于多种生物系统中,发挥着调控基因表达的作用,目前已成为潜在的药物治疗靶点。质谱技术因其灵敏度高、准确度高、样品消耗少等特点,成为研究G-四链体结构和G-四链体/小分子配体结合的强大工具。本文将对G-四链体的形成、结构、稳定化和碰撞解离行为、小分子识别及结合亲和力、化学计量比的质谱研究,RNA G-四链体结构特征的质谱研究,以及其他用于G四链体构象分析的质谱技术进行综述。
    Abstract: The G-quadruplex is an atypical secondary structure of nucleic acid formed by guanine-rich sequences, which exists in a variety of biological systems and plays an important role in regulating gene expression. So it has become a potential drug therapy target. Mass spectrometry technology is widely used in the study of G-quadruplexes because of its high sensitivity, high accuracy and low sample consumption. It has become a powerful tool for studying the structures of Gquadruplexes and the binding of G-quadruplexes with small molecule ligands. Mass spectrometry detection of G-quadruplex formation, binding affinity and stoichiometry, stabilization and collision dissociation behavior of G-quadruplex DNA, progress of MS research on RNA G-quadruplex, and other mass spectrometric techniques for conformational analysis of G-quadruplex would be reviewed in this study.
  •   3015

  • [1] WATSON J D, CRICK F H. Molecular structure of nucleic acids, a structure for deoxyribose nucleic acid[J]. Nature, 1953, 171(4 356): 737-738.
    [2] SVOBODA P, DI CARA A. Hairpin RNA: a secondary structure of primary importance[J]. Cell Mol Life Sci, 2006, 63(7/8): 901-908.
    [3] GELLERT M, LIPSETT M N, DAVIES D R. Helix formation by guanylic acid[J]. Proc Natl Acad Sci, 1962, 48(12): 2013-2018.
    [4] GEHRING K, LEROY J L, GUERON M A. Tetrameric DNA structure with protonated cytosinecytosine base pairs[J]. Nature, 1993, 363(6 429): 561-565.
    [5] WANG A H, QUIGLEY G J, KOLPAK F J, CRAWFORD J L, van BOOM J H, van DER MARELG, RICH A. Molecular structure of a left-handed double helical DNA fragment at atomic resolution[J]. Nature, 1979, 282(5 740): 680-686.
    [6] HENDERSON E, HARDIN C C, WALK S K, TINOCO I J R, BLACKBURN E H. Telomeric DNA oligonucleotides form novel intramolecular structures containing guanineguanine base pairs[J]. Cell, 1987, 51(6): 899-908.
    [7] SEN D, GILBERT W. Formation of parallel fourstranded complexes by guaninerich motifs in DNA and its implications for meiosis[J]. Nature, 1988, 334(6 180): 364366.
    [8] AGGERHOLM T, NANITA S C, KOCH K J, COOKS R G. Clustering of nucleosides in the presence of alkali metals: biologically relevant quartets of guanosine, deoxyguanosine and uridine observed by ESIMS/MS[J]. J Mass Spectrom, 2003, 38(1): 87-97.
    [9] WANG Y, PATEL D J. Solution structure of the Tetrahymena telomeric repeat d(T2G4)4 Gtetraplex[J]. Structure, 1994, 2(12): 1141-1156.
    [10] WANG Y, PATEL D J. Solution structure of the oxytricha telomeric repeat d[G4(T4G4)3] G-tetraplex[J]. J Mol Biol, 1995, 251(1): 76-94.
    [11] PUNT P M, LANGENBERG M D, ALTAN O, CLEVER G H. Modular design of Gquadruplex metalloDNAzymes for catalytic C-C bond formations with switchable enantioselectivity[J]. J Am Chem Soc, 2021, 143(9): 3555-3561.
    [12] DRY S, JASCHKE A. Tuning the stereoselectivity of a DNAcatalyzed michael addition through covalent modification[J]. Angew Chem Int Ed Engl, 2015, 54(38): 11279-11282.
    [13] ZHAO H, SHEN K. Gquadruplex DNAbased asymmetric catalysis of michael addition: effects of sonication, ligands, and cosolvents[J]. Biotechnol Prog, 2016, 32(4): 891-898.
    [14] DEY S, RUHL C L, JASCHKE A. Catalysis of michael additions by covalently modified Gquadruplex DNA[J]. Chemistry, 2017, 23(50): 12162-12170.
    [15] ZHANG L, ZHANG X, FENG P, HAN Q, LIU W, LU Y, SONG C, LI F. Photodriven regeneration of Gquadruplex aptasensor for sensitively detecting thrombin[J]. Anal Chem, 2020, 92(11): 7 419-7424.
    [16] ZHENG Y, CHAI Y, YUAN Y, YUAN R. A pseudo tripleenzyme electrochemical aptasensor based on the amplification of PtPd nanowires and hemin/Gquadruplex[J]. Anal Chim Acta, 2014, 834: 45-50.
    [17] LI T, WANG E, DONG S. Gquadruplexbased DNAzyme for facile colorimetric detection of thrombin[J]. Chem Commun (Camb), 2008(31): 3654-3656.
    [18] LI T, DONG S, WANG E. Labelfree colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+modulated Gquadruplexbased DNAzymes[J]. Anal Chem, 2009, 81(6): 2144-2149.
    [19] REDMAN J E. Surface plasmon resonance for probing quadruplex folding and interactions with proteins and small molecules[J]. Methods, 2007, 43(4): 302-312.
    [20] HALDER K, CHOWDHURY S. Kinetic resolution of bimolecular hybridization versus intramolecular folding in nucleic acids by surface plasmon resonance: application to G-quadruplex/duplex competition in human cmyc promoter[J]. Nucleic Acids Res, 2005, 33(14): 4466-4474.
    [21] GRAY D M, GRAY C W, MOU T C, WEN J D. CD of singlestranded, doublestranded, and Gquartet nucleic acids in complexes with a single-stranded DNA-binding protein[J]. Enantiomer, 2002, 7(2/3): 49-58.
    [22] SUN D, LIU W J, GUO K, RUSCHE J J, EBBINGHAUS S, GOKHALE V, HURLEY L H. The proximal promoter region of the human vascular endothelial growth factor gene has a G-quadruplex structure that can be targeted by Gquadruplexinteractive agents[J]. Mol Cancer Ther, 2008, 7(4): 880-889.
    [23] CUI X, YUAN G. Formation and recognition of Gquadruplex in promoter of cmyb oncogene by electrospray ionization mass spectrometry[J]. J Mass Spectrom, 2011, 46(9): 849-855.
    [24] OKUMUS B, HA T. Realtime observation of Gquadruplex dynamics using singlemolecule FRET microscopy[J]. Methods Mol Biol, 2010, 608: 81-96.
    [25] PAGANO B, RANDAZZO A, FOTTICCHIA I, NOVELLINO E, PETRACCONE L, GIANCOLA C. Differential scanning calorimetry to investigate G-quadruplexes structural stability[J]. Methods, 2013, 64(1): 43-51.
    [26] HADZI S, BONCINA M, LAH J. Gquadruplex stability from DSC measurements[J]. Methods Mol Biol, 2019, 2 035: 117-130.
    [27] YASAR S, SCHIMELMAN J B, AKSOYOGLU M A, STEINMETZ N F, FRENCH R H, PARSEGIAN V A, PODGORNIK R. X-ray characterization of mesophases of human telomeric G-quadruplexes and other DNA analogues[J]. Sci Rep, 2016, 6: 27079.
    [28] ZIMMERMAN S B. Xray study by fiber diffraction methods of a selfaggregate of guanosine5'phosphate with the same helical parameters as poly(rG)[J]. J Mol Biol, 1976, 106(3): 663-672.
    [29] WILLIAMSON J R. Gquartet structures in telomeric DNA[J]. Annu Rev Biophys Biomol Struct, 1994, 23: 703-730.
    [30] WEBBA D A, SILVA M. NMR methods for studying quadruplex nucleic acids[J]. Methods, 2007, 43(4): 264-277.
    [31] LIPAY J M, MIHAILESCU M R. NMR spectroscopy and kinetic studies of the quadruplex forming RNA r(UGGAGGU)[J]. Mol Biosyst, 2009, 5(11): 1347-1355.
    [32] WINNERDY F R, BAKALAR B, MAITY A, VANDANA J J, MECHULAM Y, SCHMITT E, PHAN A T. NMR solution and Xray crystal structures of a DNA molecule containing both right and lefthanded parallelstranded Gquadruplexes[J]. Nucleic Acids Res, 2019, 47(15): 8272-8281.
    [33] ROSU F, GABELICA V, HOUSSIER C, COLSON P, PAUW E D. Triplex and quadruplex DNA structures studied by electrospray mass spectrometry[J]. Rapid Commun Mass Spectrom, 2002, 16(18): 1 729-1736.
    [34] BIRRENTO M L, BRYAN T M, SAMOSORN S, BECK J L. ESIMS Investigation of an equilibrium between a bimolecular quadruplex DNA and a duplex DNA/RNA hybrid[J]. J Am Soc Mass Spectrom, 2015, 26(7): 1165-1173.
    [35] RUEDA M, LUQUE F J, OROZCO M. Gquadruplexes can maintain their structure in the gas phase[J]. J Am Chem Soc, 2006, 128(11): 3608-3619.
    [36] ZHOU J, YUAN G. Specific recognition of human telomeric Gquadruplex DNA with small molecules and the conformational analysis by ESI mass spectrometry and circular dichroism spectropolarimetry[J]. Chem Eur J, 2007, 13(17): 5018-5023.
    [37] GOODLETT D R, CAMP D G, HARDIN C C, CORREGAN M, SMITH R D. Direct observation of a DNA quadruplex by electrospray ionization mass spectrometry[J]. Biol Mass Spectrom, 1993, 22(3): 181-183.
    [38] YUAN G, ZHANG Q, ZHOU J, LI H. Mass spectrometry of Gquadruplex DNA: formation, recognition, property, conversion, and conformation[J]. Mass Spectrom Rev, 2011, 30(6): 1121-1142.
    [39] ZHOU J, YUAN G, LIU J J, ZHAN C G. Formation and stability of Gquadruplexes selfassembled from guaninerich strands[J]. Chem Eur J, 2007, 13: 945-949.
    [40] ROMANUCCI V, MARCHAND A, MENDOZA O, D'ALONZO D, ZARRRLLI A, GABBELICA V, DI FABIO G. Kinetic ESIMS studies of potent antiHIV aptamers based on the G-quadruplex forming sequence d(TGGGAG)[J]. ACS Med Chem Lett, 2016, 7(3): 256-260.
    [41] ANG D L, KELSO C, BECK J L, RALPH S F, HARMAN D G, ALDRICHWRIGHT J R. A study of Pt(Ⅱ)phenanthroline complex interactions with doublestranded and G-quadruplex DNA by ESIMS, circular dichroism, and computational docking[J]. J Biol Inorg Chem, 2020, 25(3): 429-440.
    [42] RAJU G, SRINIVAS R, REDDY V S, IDRIS M M, KAMAL A, NAGESH N. Interaction of pyrrolobenzodiazepine (PBD) ligands with parallel intermolecular Gquadruplex complex using spectroscopy and ESI-MS[J]. PLoS One, 2012, 7(6): e35920.
    [43] BAI L P, LIU J, HAN L, HO H M, WANG R, JIANG Z H. Mass spectrometric studies on effects of counter ions of TMPyP4 on binding to human telomeric DNA and RNA G-quadruplexes[J]. Anal Bioanal Chem, 2014, 406(22): 5455-5463.
    [44] 张士伟,李卉卉,周江,杨小弟. 电喷雾质谱法研究Kras基因启动子区G四链体的形成与性质[J]. 质谱学报,2015,36(6):521-528.
    ZHANG Shiwei, LI Huihui, ZHOU Jiang, YANG Xiaodi. Formation and properties of Gquadruplex formed from Kras Promoter by ESI-MS[J]. Journal of Chinese Mass Spectrometry, 2015, 36(6): 521-528(in Chinese).
    [45] VAIRAMANI M, GROSS M L. Gquadruplex formation of thrombinbinding aptamer detected by electrospray ionization mass spectrometry[J]. J Am Chem Soc, 2003, 125(1): 42-43.
    [46] BHATTACHARYYA D, MIRIHANA ARACHCHILAGE G, BASU S. Metal cations in Gquadruplex folding and stability[J]. Front Chem, 2016, 4: 38.
    [47] YU Z, ZHOU W, MA G, LI Y, FAN L, LI X, LU Y. Insights into the competition between K+ and Pb2+ binding to a Gquadruplex and discovery of a novel K+Pb2+quadruplex intermediate[J]. J Phys Chem B, 2018, 122(40): 9382-9388.
    [48] LI H, LIU Y, LIN S, YUAN G. Spectroscopy probing of the formation, recognition, and conversion of a Gquadruplex in the promoter region of the bcl2 oncogene[J]. Chem Eur J, 2009, 15(10): 2445-2452.
    [49] DAVID W M, BRODBELT J, KERWIN S M, THOMAS P W. Investigation of quadruplex oligonucleotidedrug interactions by electrospray ionization mass spectrometry[J]. Anal Chem, 2002, 74(9): 2029-2033.
    [50] LIU Y, ZHENG B, XU X, YUAN G. Probing the binding affinity of smallmolecule natural products to the Gquadruplex in Cmyc oncogene by electrospray ionization mass spectrometry[J]. Rapid Commun Mass Spectrom, 2010, 24(20): 3072-3075.
    [51] PIERCE S E, SHERMAN C L, JAYAWICKRAMARAJAH J, LAWRENCE C M, SESSLER J L, BRODBELT J S. ESI-MS characterization of a novel pyrroleinosine nucleoside that interacts with guanine bases[J]. Anal Chim Acta, 2008, 627(1): 129-135.
    [52] BAI L P, HAGIHARA M, JIANG Z H, NAKATANI K. Ligand binding to tandem G quadruplexes from human telomeric DNA[J]. Chembiochem, 2008, 9(16): 2583-2587.
    [53] TURNER K B, MONTI S A, FABRIS D. Like polarity ion/ion reactions enable the investigation of specific metal interactions in nucleic acids and their noncovalent assemblies[J]. J Am Chem Soc, 2008, 130(40): 13353-13363.
    [54] EVANS S E, MENDEZ M A, TURNER K B, KEATING L R, GRIMES R T, MELCHOIR S, SZALAI V A. Endstacking of copper cationic porphyrins on parallelstranded guanine quadruplexes[J]. J Biol Inorg Chem, 2007, 12(8): 1235-1249.
    [55] ROMANUCCI V, MARCHAND A, MENDOZA O, D′ALONZO D, ZARRELLI A, GABELICA V, DI FABIO G. Kinetic ESIMS studies of potent antiHIV aptamers based on the G-quadruplex forming sequence d(TGGGAG)[J]. ACS Med Chem Lett, 2016, 7(3): 256-260.
    [56] FERREIRA R, MARCHAND A, GABELICA V. Mass spectrometry and ion mobility spectrometry of Gquadruplexes. A study of solvent effects on dimer formation and structural transitions in the telomeric DNA sequence d(TAGGGTTAGGGT)[J]. Methods, 2012, 57(1): 56-63.
    [57] TAN W, YI L, ZHU Z, ZHANG L, ZHOU J, YUAN G. HsamiR1587 Gquadruplex formation and dimerization induced by NH4+, molecular crowding environment and jatrorrhizine derivatives[J]. Talanta, 2018, 179: 337-343.
    [58] MARCHAND A, GABELICA V. Native electrospray mass spectrometry of DNA Gquadruplexes in potassium solution[J]. J Am Soc Mass Spectrom, 2014, 25(7): 1146-1154.
    [59] SCALABRIN M, PALUMBO M, RICHTER S N. Highly improved electrospray ionizationmass spectrometry detection of G-quadruplex-folded oligonucleotides and their complexes with small molecules[J]. Anal Chem, 2017, 89(17): 8632-8637.
    [60] BASIRI B, van HATTUM H, van DONGEN W D, MURPH M M, BARTLETT M G. The role of fluorinated alcohols as mobile phase modifiers for LC-MS analysis of oligonucleotides[J]. J Am Soc Mass Spectrom, 2017, 28(1): 190-199.
    [61] DAVID W M, BRODBELT J, KERWIN S M, THOMAS P W. Investigation of quadruplex oligonucleotidedrug interactions by electrospray ionization mass spectrometry[J]. Anal Chem, 2002, 74(9): 2029-2033.
    [62] MAZZITELLI C L, WANG J, SMITH S I, BRODBELT J S. Gasphase stability of Gquadruplex DNA determined by electrospray ionization tandem mass spectrometry and molecular dynamics simulations[J]. J Am Soc Mass Spectrom, 2007, 18(10): 1760-1773.
    [63] TAN W, YUAN G. Electrospray ionization mass spectrometric exploration of the highaffinity binding of three natural alkaloids with the mRNA Gquadruplex in the BCL2 5′untranslated region[J]. Rapid Commun Mass Spectrom, 2013, 27(4): 560-564.
    [64] LEE C, CHOI Y K, LEE S, HAN S Y. Hydrogen bonding influences collisioninduced dissociation of Na+bound guanine tetrads[J]. J Mass Spectrom, 2020, 56(4): e4582.
    [65] XU Y, KAMINAGA K, KOMIYAMA M. Gquadruplex formation by human telomeric repeatscontaining RNA in Na+ solution[J]. J Am Chem Soc, 2008, 130(33): 11179-11184.
    [66] XIAO C D, SHIBATA T, YAMAMOTO Y, XU Y. An intramolecular antiparallel Gquadruplex formed by human telomere RNA[J]. Chem Commun (Camb), 2018, 54(32): 3944-3946.
    [67] LYU K, CHOW E Y, MOU X, CHAN T F, KWOK C K. RNA Gquadruplexes (rG4s): genomics and biological functions[J]. Nucleic Acids Res, 2021, 49(10): 5426-5450.
    [68] VARSHNEY D, SPIEGEL J, ZYNER K, TANNAHILL D, BALASUBRAMANIAN S. The regulation and functions of DNA and RNA Gquadruplexes[J]. Nat Rev Mol Cell Biol, 2020, 21(8): 459-474.
    [69] HUPPERT J L, BUGAUT A, KUMARI S, BALASUBRAMANIAN S. Gquadruplexes: the beginning and end of UTRs[J]. Nucleic Acids Res, 2008, 36(19): 6260-6268.
    [70] FAY M M, LYONS S M, IVANOV P. RNA Gquadruplexes in biology: principles and molecular mechanisms[J]. J Mol Biol, 2017, 429(14): 2127-2147.
    [71] KHAREL P, BALARATNAM S, BEALS N, BASU S. The role of RNA Gquadruplexes in human diseases and therapeutic strategies[J]. Wiley Interdiscip Rev RNA, 2020, 11(1): e1568.
    [72] MILLEVOIS, MOINE H, VAGNER S. Gquadruplexes in RNA biology[J]. Wiley Interdiscip Rev RNA, 2012, 3(4): 495-507.
    [73] YADAV P, KIM N, KUMARI M, VERMA S, SHARMA T K, YADAV V, KUMAR A. Gquadruplex structures in bacteria: biological relevance and potential as an antimicrobial target[J]. J Bacteriol, 2021, 203(13): e0057720.
    [74] BUGAUT A, BALASUBBRAMANIAN S. A sequenceindependent study of the influence of short loop lengths on the stability and topology of intramolecular DNA G-quadruplexes[J]. Biochemistry, 2008, 47(2): 689-697.
    [75] ZHANG D H, FUJIMOTO T, SAXENA S, YU H Q, MIYOSHI D, SUGIMOTO N. Monomorphic RNA Gquadruplex and polymorphic DNA G-quadruplex structures responding to cellular environmental factors[J]. Biochemistry, 2010, 49(21): 4554-4563.
    [76] ARORA A, NAIR D R, MAITI S. Effect of flanking bases on quadruplex stability and WatsonCrick duplex competition[J]. FEBS J, 2009, 276(13): 3628-3640.
    [77] JOACHIMI A, BENZ A, HARTIG JS. A comparison of DNA and RNA quadruplex structures and stabilities[J]. Bioorg Med Chem, 2009, 17(19): 6811-6815.
    [78] BUTOVSKAYA E, SOLDA P, SCALABRIN M, NADAI M, RICHTER S N. HIV1 nucleocapsid protein unfolds stable RNA G-quadruplexes in the viral genome and is Inhibited by G-quadruplex ligands[J]. ACS Infect Dis, 2019, 5(12): 2127-2135.
    [79] LI F, TAN W, CHEN H, ZHOU J, XU M, YUAN G. Up and down regulation of mature miR1587 function by modulating its G-quadruplex structure and using small molecules[J]. Int J Biol Macromol, 2019, 121: 127-134.
    [80] XI M, LI Y, ZHOU J. Exploration of the formation and structure characteristics of a miR92a promoter G-quadruplex by ESI-MS and CD[J]. Talanta, 2020, 211: 120 708.
    [81] HUANG H, SUSLOV N B, LI N S, SHELKE S A, EVANS M E, KOLDOBSKAYA Y, RICE P A, PICCIRILLI J A. A G-quadruplexcontaining RNA activates fluorescence in a GFP-like fluorophore[J]. Nat Chem Biol, 2014, 10(8): 686-691.
    [82] WARNER K D, CHEN M C, SONG W, STRACK R L, THORN A, JAFFREY S R, AMARE A R. Structural basis for activity of highly efficient RNA mimics of green fluorescent protein[J]. Nat Struct Mol Biol, 2014, 21(8): 658-663.
    [83] XIAO C D, SHIBATA T, YAMAMOTO Y, XU Y. An intramolecular antiparallel Gquadruplex formed by human telomere RNA[J]. Chem Commun (Camb), 2018, 54(32): 3944-3946.
    [84] XIAO C D, ISHIZUKA T, XU Y. Antiparallel RNA Gquadruplex formed by human telomere RNA containing 8-bromoguanosine[J]. Sci Rep, 2017, 7(1): 6695.
    [85] HANSELHERTSCH R, SIMEONE A, SHEA A, HUI W, ZYNER K G, MARSICO G, RUEDA O M, BRUNA A, MARTIN A, ZHANG X, ADHIKARI S, TANNAHILL D, CALDAS C, BALASUBRAMANIAN S. Landscape of G-quadruplex DNA structural regions in breast cancer[J]. Nat Genet, 2020, 52(9): 878-883.
    [86] NAKANISHI C, SEIMIYA H. Gquadruplex in cancer biology and drug discovery[J]. Biochem Biophys Res Commun, 2020, 531(1): 45-50.
    [87] BOCHMAN M L, PAESCHKE K, ZAKIAN V A. DNA secondary structures: stability and function of G-quadruplex structures[J]. Nat Rev Genet, 2012, 13(11): 770-780.
    [88] GEORGIADES S N, Abd KARIM N H, Suntharalingam K, VILAR R. Interaction of metal complexes with G-quadruplex DNA[J]. Angew Chem Int Ed Engl, 2010, 49(24): 4020-4034.
    [89] XIONG Y X, HUANG Z S, TAN J H. Targeting Gquadruplex nucleic acids with heterocyclic alkaloids and their derivatives[J]. Eur J Med Chem, 2015, 97: 538-551.
    [90] NAGESH N, BUSCAGLIA R, DETTLER J M, LEWIS E A. Studies on the site and mode of TMPyP4 interactions with Bcl2 promoter sequence GQuadruplexes[J]. Biophys J, 2010, 98(11): 2628-2633.
    [91] HAIDER S M, PARKINSON G N, NEIDLE S. Structure of a Gquadruplexligand complex[J]. J Mol Biol, 2003, 326(1): 117-125.
    [92] BAZZICALUPI C, FERRARONI M, PAPI F, MASSAI L, BERTRAND B, MESSORI L, GRATTERI P, CASINI A. Determinants for tight and selective binding of a medicinal dicarbene gold(I) complex to a telomeric DNA Gquadruplex: a joint ESI MS and XRD investigation[J]. Angew Chem Int Ed Engl, 2016, 55(13): 4256-4259.
    [93] FRANCESCHIN M, NOCIONI D, BIROCCIO A, MICHELI E, CACCHIONE S, CINGOLANI C, VENDITTI A, ZIZZA P, BIANCO A, ALTIERI A. Design and synthesis of a new dimeric xanthone derivative: enhancement of Gquadruplex selectivity and telomere damage[J]. Org Biomol Chem, 2014, 12(47): 9572-9582.
    [94] LI F, CHEN H, ZHOU J, YUAN G. Exploration of the selective recognition of the G-quadruplex in the Nmyc oncogene by electrospray ionization mass spectrometry[J]. Rapid Commun Mass Spectrom, 2015, 29(3): 247-252.
    [95] LI F, GUO D, KANG L. Study on the recognition of Gquadruplexes by two stereoisomers of alkaloids[J]. Anal Bioanal Chem, 2019, 411(21): 5555-5561.
    [96] MARTINO L, VIRNO A, PAGANO B, VIRGILIO A, di MICCO S, GALEONE A, GIANCOLA C, BIFULCO G, MAYOL L, RANDAZZO A. Structural and thermodynamic studies of the interaction of distamycin A with the parallel quadruplex structure [d(TGGGGT)]4[J]. J Am Chem Soc, 2007, 129(51): 16048-16056.
    [97] NANJUNDA R, MUSETTI C, KUMARA, ISMAIL M A, FARAHAT A A, WANG S, SISSI C, PALUMBO, M, BOYKIN D W, WILSON W D. Heterocyclic dications as a new class of telomeric G-quadruplex targeting agents[J]. Curr Pharm Des, 2012, 18(14): 1934-1947.
    [98] CUI X, ZHANG Q, CHEN H, ZHOU J, YUAN G. ESI mass spectrometric exploration of selective recognition of G-quadruplex in cmyb oncogene promoter using a novel flexible cyclic polyamide[J]. J Am Soc Mass Spectrom, 2014, 25(4): 684-691.
    [99] ABZALIMOV R R, KAPLAN D A, EASTERLING M L, KALTASHOV I A. Protein conformations can be probed in topdown HDX MS experiments utilizing electron transfer dissociation of protein ions without hydrogen scrambling[J]. J Am Soc Mass Spectrom, 2009, 20(8): 1514-1517.
    [100] LARGY E, GABELICA V. Native hydrogen/deuterium exchange mass spectrometry of structured DNA oligonucleotides[J]. Anal Chem, 2020, 92(6): 4402-4410.
    [101] VAIRAMANI M, GROSS M L. Gquadruplex formation of thrombinbinding aptamer detected by electrospray ionization mass spectrometry[J]. J Am Chem Soc, 2003, 125(1): 42-43.
    [102] GABELICA V, ROSU F, WITT M, BAYKUT G, de PAUW E. Fast gasphase hydrogen/ deuterium exchange observed for a DNA Gquadruplex[J]. Rapid Commun Mass Spectrom, 2005, 19(2): 201-208.
    [103] GABELICA V, ROSU F, de PAUW E, LEMAIRE J, GILLET J C, POULLY J C, LECOMTE F, GREGOIRE G, SCHERMANN J P, DESFRANCOIS C. Infrared signature of DNA G-quadruplexes in the gas phase[J]. J Am Chem Soc, 2008, 130(6): 1810-1811.
    [104] BAKER E S, BERNSTEIN S L, BOWERS M T. Structural characterization of Gquadruplexes in deoxyguanosine clusters using ion mobility mass spectrometry[J]. J Am Soc Mass Spectrom, 2005, 16(7): 989-997.
    [105] GABELICA V, BAKER E S, TEULADEFICHOU M P, de PAUW E, BOWERS M T. Stabilization and structure of telomeric and cmyc region intramolecular G-quadruplexes: the role of central cations and small planar ligands[J]. J Am Chem Soc, 2007,129(4): 895-904.
    [106] 周江,袁谷,BOWERS M T. 电喷雾质谱法研究退火条件对cmyc启动子序列构象的影响[J]. 质谱学报,2008,29(增刊):213-214.
    ZHOU Jiang, YUAN Gu, BOWERS M T. Effect of anneealing on the conformation of the cmyc promoter sequence by electrospray ionization mass spectrometry[J]. Journal of Chinese Mass Spectrometry, 2008, 29(Suppl): 213-214(in Chinese).
    [107] D′ATRI V, GABELICA V. DNA and RNA telomeric Gquadruplexes: what topology features can be inferred from ion mobility mass spectrometry?[J]. Analyst, 2019, 144(20): 6074-6088.
图(1)
计量
  • 文章访问数:  431
  • HTML全文浏览量:  0
  • PDF下载量:  238
  • 被引次数: 0
出版历程
  • 刊出日期:  2021-09-19

目录

    /

    返回文章
    返回