新冠病毒蛋白及其细胞受体ACE2翻译后修饰的质谱分析

钟力, 朱林, 蔡宗苇

钟力, 朱林, 蔡宗苇. 新冠病毒蛋白及其细胞受体ACE2翻译后修饰的质谱分析[J]. 质谱学报, 2021, 42(5): 563-584. DOI: 10.7538/zpxb.2021.0114
引用本文: 钟力, 朱林, 蔡宗苇. 新冠病毒蛋白及其细胞受体ACE2翻译后修饰的质谱分析[J]. 质谱学报, 2021, 42(5): 563-584. DOI: 10.7538/zpxb.2021.0114
ZHONG Li, ZHU Lin, CAI Zong-wei. Mass Spectrometric Analysis of Post-Translational Modifications on SARS-CoV-2 Viral Proteins and Its Cellular Receptor ACE2[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5): 563-584. DOI: 10.7538/zpxb.2021.0114
Citation: ZHONG Li, ZHU Lin, CAI Zong-wei. Mass Spectrometric Analysis of Post-Translational Modifications on SARS-CoV-2 Viral Proteins and Its Cellular Receptor ACE2[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5): 563-584. DOI: 10.7538/zpxb.2021.0114
钟力, 朱林, 蔡宗苇. 新冠病毒蛋白及其细胞受体ACE2翻译后修饰的质谱分析[J]. 质谱学报, 2021, 42(5): 563-584. CSTR: 32365.14.zpxb.2021.0114
引用本文: 钟力, 朱林, 蔡宗苇. 新冠病毒蛋白及其细胞受体ACE2翻译后修饰的质谱分析[J]. 质谱学报, 2021, 42(5): 563-584. CSTR: 32365.14.zpxb.2021.0114
ZHONG Li, ZHU Lin, CAI Zong-wei. Mass Spectrometric Analysis of Post-Translational Modifications on SARS-CoV-2 Viral Proteins and Its Cellular Receptor ACE2[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5): 563-584. CSTR: 32365.14.zpxb.2021.0114
Citation: ZHONG Li, ZHU Lin, CAI Zong-wei. Mass Spectrometric Analysis of Post-Translational Modifications on SARS-CoV-2 Viral Proteins and Its Cellular Receptor ACE2[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5): 563-584. CSTR: 32365.14.zpxb.2021.0114

新冠病毒蛋白及其细胞受体ACE2翻译后修饰的质谱分析

Mass Spectrometric Analysis of Post-Translational Modifications on SARS-CoV-2 Viral Proteins and Its Cellular Receptor ACE2

  • 摘要: 新冠肺炎(COVID-19)在全世界范围内造成了巨大的健康危机和不可估量的损失。新出现的变种病毒株表明,新冠病毒(SARS-CoV-2)可能会像流感病毒一样在人类社会中继续流行,成为一种长久的健康威胁。控制新冠病毒的传染和开发有效的治疗方法迫在眉睫。因此,找到合适的生物标志物以表明病理和生理状态是当务之急。蛋白质是生命功能的执行者,其丰度和修饰状态可以直接反映免疫状态。蛋白质的糖基化和磷酸化等翻译后修饰对调节蛋白质的功能有很大影响。在 SARS 病毒、寨卡病毒、流感病毒的研究中,蛋白质的翻译后修饰被证明是可靠的生物标志物。近年来,基于质谱技术的蛋白质组学研究有了很大的进展。通过对基于质谱的生物标志物研究策略的回顾,特别是对蛋白质翻译后修饰的研究,对于人类早日战胜新冠疫情具有重要意义。本文总结了目前基于质谱对新冠病毒蛋白翻译后修饰的研究报道,特别是对糖基化及磷酸化的研究进展,并展望了质谱分析在新冠病毒翻译后修饰研究的挑战及前景。
    Abstract: COVID-19 has caused a huge health crisis and incalculable damage worldwide. Emerging immune escaping mutants of the virus suggests that SARS-CoV-2 may be persistent in human society like the flu virus and become a long-lasting health threat. The control of SARS-CoV-2 transmission and the development of an effective treatment are imminent. Therefore, it is imperative to find appropriate biomarkers to indicate pathological and physiological. Proteins are performers of life functions and their abundance and modification status can directly reflect the immune status. Post-translational modifications such as glycosylation and phosphorylation have a great impact on the regulation of protein functions. In the studies of SARS, Zika, and H1N1, post-translational modified proteins have shown to be reliable biomarkers. In recent years, mass spectrometry-based proteomics has made great progress due to the development of mass spectrometry technology. A review of research strategies for mass spectrometry-based biomarkers, especially in the application of protein post-translational modifications, is important for the victory of human beings fighting the Covid-19 epidemic. This review summarized the current progress of mass spectrometry-based studies on the PTM status of SARS-CoV-2 viral proteins, particularly in glycosylation and phosphorylation aspect. The challenge and prospect of the application of mass spectrometry in this particular research area were outlined.
  •   2992

  • [1] The World Health Organization (WHO). Pneumonia of unknown causeChina[R]. World Health Organization, 2020.
    [2] CHAN J F W, YUAN S, KOK K H, TO K K W, CHU H, YANG J, XING F, LIU J, YIP C C Y, POON R W S, TSOI H W, LO S K F, CHAN K H, POON V K M, CHAN W M, IP J D, CAI J P, CHENG V C C, CHEN H, HUI C K M, YUEN K Y. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating persontoperson transmission: a study of a family cluster[J]. The Lancet, 2020, 395(10 223): 514-523.
    [3] LU R, ZHAO X, LI J, NIU P, YANG B, WU H, WANG W, SONG H, HUANG B, ZHU N, BI Y, MA X, ZHAN F, WANG L, HU T, ZHOU H, HU Z, ZHOU W, ZHAO L, CHEN J, MENG Y, WANG J, LIN Y, YUAN J, XIE Z, MA J, LIU W J, WANG D, XU W, HOLMES E C, GAO G F, WU G, CHEN W, SHI W, TAN W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding[J]. The Lancet, 2020, 395(10 224): 565-574.
    [4] CHAN J F W, KOK K H, ZHU Z, CHU H, TO K K W, YUAN S, YUEN K Y. Genomic characterization of the 2019 novel humanpathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan[J]. Emerging Microbes and Infections, 2020, 9(1): 221-236.
    [5] WU F, ZHAO S, YU B, CHEN Y M, WANG W, SONG Z G, HU Y, TAO Z W, TIAN J H, PEI Y Y, YUAN M L, ZHANG Y L, DAI F H, LIU Y, WANG Q M, ZHENG J J, XU L, HOLMES E C, ZHANG Y Z. A new coronavirus associated with human respiratory disease in China[J]. Nature, 2020, 579(7798): 265-269.
    [6] LAI C C, SHIH T P, KO W C, TANG H J, HSUEH P R. Severe acute respiratory syndrome coronavirus 2 (SARSCoV2) and coronavirus disease2019 (COVID-19): the epidemic and the challenges[J]. International Journal of Antimicrobial Agents, 2020, 55(3): 105 924.
    [7] GRIFONI A, SIDNEY J, ZHANG Y, SCHEUERMANN R H, PETERS B, SETTE A. A sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARSCoV2[J]. Cell Host and Microbe, 2020, 27(4): 671-680.
    [8] DONG E, DU H, GARDNER L. An interactive webbased dashboard to track COVID19 in real time[J]. The Lancet Infectious Diseases, 2020, 20(5): 533-534.
    [9] YUKI K, FUJIOGI M, KOUTSOGIANNAKI S. COVID-19 pathophysiology: a review[J]. Clinical Immunology, 2020, 215: 108 427.
    [10] BATTAGELLO D S, DRAGUNAS G, KLEIN M O, AYUB A L P, VELLOSO F J, CORREA R G. Unpuzzling COVID19: tissuerelated signaling pathways associated with SARSCoV2 infection and transmission[J]. Clinical Science, 2020, 134(16): 2137-2160.
    [11] WOODS J A, HUTCHINSON N T, POWERS S K, ROBERTS W O, GOMEZCABRERA M C, RADAK Z, BERKES I, BOROS A, BOLDOGH I, LEEUWENBURGH C, COELHOJU'NIOR H J, MARZETTI E, CHENG Y, LIU J, DURSTINE J L, SUN J, JI L L. The COVID-19 pandemic and physical activity[J]. Sports Medicine and Health Science, 2020(2): 55-64.
    [12] LIYA G, YUGUANG W, JIAN L, HUAIPING Y, XUE H, JIANWEI H, JIAJU M, YOURAN L, CHEN M, YIQING J. Studies on viral pneumonia related to novel coronavirus SARSCoV2, SARSCoV, and MERSCoV: a literature review[J]. APMIS, 2020, 128(6): 423-432.
    [13] HOFFMANN M, KLEINEWEBER H, SCHROEDER S, KRGER N, HERRLER T, ERICHSEN S, SCHIERGENS T S, HERRLER G, WU N H, NITSCHE A, MLLER M A, DROSTEN C, PHLMANN S. SARSCoV2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell, 2020, 181(2): 271-280.
    [14] VARGA Z, FLAMMER A J, STEIGER P, HABERECKER M, ANDERMATT R, ZINKERNAGEL A S, MEHRA M R, SCHUEPBACH R A, RUSCHITZKA F, MOCH H. Endothelial cell infection and endotheliitis in COVID-19[J]. The Lancet, 2020, 395(10 234): 1417-1418.
    [15] GU J, HAN B, WANG J. COVID19: gastrointestinal manifestations and potential fecaloral transmission[J]. Gastroenterology, 2020, 158(6): 1518-1519.
    [16] MENNI C, VALDES A M, FREIDIN M B, GANESH S, ELSAYED MOUSTAFA J S, VISCONTI A, HYSI P, BOWYER R C E, MANGINO M, FALCHI M, WOLF J, STEVES C J, SPECTOR T D. Loss of smell and taste in combination with other symptoms is a strong predictor of COVID19 infection[J]. MedRxiv, 2020, doi: 10.1101/2020.04.05.20048421.
    [17] BACKER J A, KLINKENBERG D, WALLINGA J. Incubation period of 2019 novel coronavirus (2019nCoV) infections among travellers from Wuhan, China, 2028 January 2020[J]. Eurosurveillance, 2020, doi: 10.2807/15607917.ES.2020.25.5.2000062.
    [18] WANG W, TANG J, WEI F. Updated understanding of the outbreak of 2019 novel coronavirus (2019nCoV) in Wuhan, China[J]. Journal of Medical Virology, 2020, 92(4): 441-447.
    [19] SABINO E C, BUSS L F, CARVALHO M P S, PRETE C A, CRISPIM M A E, FRAIJI N A, PEREIRA R H M, PARAG K V, DA SILVA PEIXOTO P, KRAEMER M U G, OIKAWA M K, SALOMON T, CUCUNUBA Z M, CASTRO M C, de SOUZA SANTOS A A, NASCIMENTO V H, PEREIRA H S, FERGUSON N M, PYBUS O G, KUCHARSKI A, BUSCH M P, DYE C, FARIA N R. Resurgence of COVID19 in Manaus, Brazil, despite high seroprevalence[J]. The Lancet, 2021, 397(10 273): 452-455.
    [20] WIBMER C K, AYRES F, HERMANUS T, MADZIVHANDILA M, KGAGUDI P, OOSTHUYSEN B, LAMBSON B E, de OLIVEIRA T, VERMEULEN M, van der BERG K, ROSSOUW T, BOSWELL M, UECKERMANN V, MEIRING S, VON GOTTBERG A, COHEN C, MORRIS L, BHIMAN J N, MOORE P L. SARSCoV2 501Y.V2 escapes neutralization by South African COVID19 donor plasma[J]. Nature Medicine, Nature Research, 2021, 27(4): 622-625.
    [21] DAVIES N G, ABBOTT S, BARNARD R C, JARVIS C I, KUCHARSKI A J, MUNDAY J D, PEARSON C A B, RUSSELL T W, TULLY D C, WASHBURNE A D, WENSELEERS T, GIMMA A, WAITES W, WONG K L M, VAN ZANDVOORT K, SILVERMAN J D, DIAZORDAZ K, KEOGH R, EGGO R M, FUNK S, JIT M, ATKINS K E, EDMUNDS W J. Estimated transmissibility and impact of SARSCoV2 lineage B.1.1.7 in England[J]. Science, 2021, 372(6538): 3055.
    [22] SHU T, NING W, WU D, XU J, HAN Q, HUANG M, ZOU X, YANG Q, YUAN Y, BIE Y, PAN S, MU J, HAN Y, YANG X, ZHOU H, LI R, REN Y, CHEN X, YAO S, QIU Y, ZHANG D Y, XUE Y, SHANG Y, ZHOU X. Plasma proteomics identify biomarkers and pathogenesis of COVID19[J]. Immunity, 2020, 53(5): 1 108.
    [23] SHEN B, YI X, SUN Y, BI X, DU J, ZHANG C, QUAN S, ZHANG F, SUN R, QIAN L, GE W, LIU W, LIANG S, CHEN H H, ZHANG Y, LI J, XU J, HE Z, CHEN B, WANG J, YAN H, ZHENG Y, WANG D, ZHU J, KONG Z, KANG Z, LIANG X, DING X, RUAN G, XIANG N, CAI X, GAO H, LI L, LI S, XIAO Q, LU T, ZHU Y, LIU H, CHEN H H, GUO T. Proteomic and metabolomic characterization of COVID-19 patient sera[J]. Cell, 2020, 182(1): 59-72.
    [24] NIE X, QIAN L, SUN R, HUANG B, DONG X, XIAO Q, ZHANG Q, LU T, YUE L, CHEN S, LI X, SUN Y, LI L, XU L, LI Y, YANG M, XUE Z, LIANG S, DING X, YUAN C, PENG L, LIU W, YI X, LYU M, XIAO G, XU X, GE W, HE J, FAN J, WU J, LUO M, CHANG X, PAN H, CAI X, ZHOU J, YU J, GAO H, XIE M, WANG S, RUAN G, CHEN H, SU H, MEI H, LUO D, ZHAO D, XU F, ZHU Y, XIA J, HU Y, GUO T. Multi-organ proteomic landscape of COVID-19 autopsies[J]. Cell, 2021, 184(3): 775-791.
    [25] HTTENHAIN R, MALMSTRM J, PICOTTI P, AEBERSOLD R. Perspectives of targeted mass spectrometry for protein biomarker verification[J]. Current Opinion in Chemical Biology, 2009, 13(5/6): 518-525.
    [26] BAHIR I, FROMER M, PRAT Y, LINIAL M. Viral adaptation to host: a proteomebased analysis of codon usage and amino acid preferences[J]. Molecular Systems Biology, 2009, 5: 311.
    [27] LONG J S, MISTRY B, HASLAM S M, BARCLAY W S. Host and viral determinants of influenza a virus species specificity[J]. Nature Reviews Microbiology, 2019, 17(2): 67-81.
    [28] TAUBENBERGER J K, KASH J C. Influenza virus evolution, host adaptation, and pandemic formation[J]. Cell Host and Microbe, 2010, 7(6): 440-451.
    [29] DUYEN H T L, NGOC T V, HA D T, HANG V T T, KIEU N T T, YOUNG P R, FARRAR J J, SIMMONS C P, WOLBERS M, WILLS B A. Kinetics of plasma viremia and soluble nonstructural protein 1 concentrations in dengue: Differential effects according to serotype and immune status[J]. Journal of Infectious Diseases, 2011, 203(9): 1292-1300.
    [30] BRAUN L, BRENIERPINCHART M P, YOGAVEL M, CURTVARESANO A, CURTBERTINI R L, HUSSAIN T, KIEFFERJAQUINOD S, COUTE Y, PELLOUX H, TARDIEUX I, SHARMA A, BELRHALI H, BOUGDOUR A, HAKIMI M A. A Toxoplasma dense granule protein, GRA24, modulates the early immune response to infection by promoting a direct and sustained host p38 MAPK activation[J]. Journal of Experimental Medicine, 2013, 210(10): 2071-2086.
    [31] SCATURRO P, KASTNER A L, PICHLMAIR A. Chasing intracellular Zika virus using proteomics[J]. Viruses, 2019, 11(9): 878.
    [32] GARCADORIVAL I, WU W, ARMSTRONG S D, BARR J N, CARROLL M W, HEWSON R, HISCOX J A. Elucidation of the cellular interactome of Ebola virus nucleoprotein and identification of therapeutic targets[J]. Journal of Proteome Research, 2016, 15(12): 4290-4303.
    [33] STALIN RAJ V, LAMERS M M, SMITS S L, DEMMERS J A A, MOU H, BOSCH B J, HAAGMANS B L. Identification of protein receptors for coronaviruses by mass spectrometry[J]. Coronaviruses: Methods and Protocols, 2015, 1 282(165): 165-182.
    [34] PRABAKARAN S, LIPPENS G, STEEN H, GUNAWARDENA J. Posttranslational modification: nature’s escape from genetic imprisonment and the basis for dynamic information encoding[J]. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2012, 4(6): 565-583.
    [35] WALLS A C, XIONG X, YOUNGJUN P, TORTORICI M A, JOOST S, JOEL Q, ELISABETTA C, ROBIN G, MIAN D, ANTONIO L. Unexpected receptor functional mimicry elucidates activation of coronavirus fusion[J]. Cell, 2019, 176(5): 1026-1039.
    [36] IANNI M, MANERBA M, DI STEFANO G, PORCELLINI E, CHIAPPELLI M, CARBONE I, LICASTRO F. Altered glycosylation profile of purified plasma ACT from Alzheimer’s disease[J]. Immunity and Ageing, 2010, 7(Suppl 1): S6.
    [37] de LEOZ M L A, YOUNG L J T, AN H J, KRONEWITTER S R, KIM J, MIYAMOTO S, BOROWSKY A D, CHEW H K, LEBRILLA C B. Highmannose glycans are elevated during breast cancer progression[J]. Molecular and Cellular Proteomics, 2011, 10(1): M110.002717.
    [38] PTOLEMY A S, RIFAI N. What is a biomarker? Research investments and lack of clinical integration necessitate a review of biomarker terminology and validation schema[J]. Scandinavian Journal of Clinical and Laboratory Investigation, 2010, 70(242): 6-14.
    [39] COHEN P. The origins of protein phosphorylation[J]. Nature Cell Biology, 2002, 4(5): 127-130.
    [40] YANG D, CHU H, HOU Y, CHAI Y, SHUAI H, LEE A C Y, ZHANG X, WANG Y, HU B, HUANG X, YUEN T T T, CAI J P, ZHOU J, YUAN S, ZHANG A J, CHAN J F W, YUEN K Y. Attenuated interferon and proinflammatory response in SARSCoV2infected human dendritic cells is associated with viral antagonism of STAT1 phosphorylation[J]. Journal of Infectious Diseases, 2020, 222(5): 734-745.
    [41] ABINADER E O, ABINADER M V M. Inflamed host: serine/threonine phosphorylation signaling pathway that links obesity and insulin resistance and worse prognosis for COVID-19[J]. SSRN Electronic Journal, 2020, doi: 10.2139/ssrn.3573808.
    [42] LIAO J, FAN S, CHEN J, WU J, XU S, GUO Y, LI C, ZHANG X, WU C, MOU H, SONG C, LI F, WU G, ZHANG J, GUO L, LIU H, LV J, XU L, LANG C. Epidemiological and clinical characteristics of COVID19 in adolescents and young adults[J]. The Innovation, 2020, 1(1): 100 001.
    [43] CLARK A, JIT M, WARRENGASH C. Global, regional, and national estimates of the population at increased risk of severe COVID19 due to underlying health conditions in 2020: a modelling study[J]. The Lancet Global Health, 2020, 8(8): 1003-1017.
    [44] ONG E Z, CHAN Y F Z, LEONG W Y, LEE N M Y, KALIMUDDIN S, HAJA MOHIDEEN S M, CHAN K S, TAN A T, BERTOLETTI A, OOI E E, LOW J G H. A dynamic immune response shapes COVID-19 progression[J]. Cell Host and Microbe, 2020, 27(6): 879-882.
    [45] WILK A J, RUSTAGI A, ZHAO N Q, ROQUE J, MARTNEZCOLN G J, MCKECHNIE J L, IVISON G T, RANGANATH T, VERGARA R, HOLLIS T, SIMPSON L J, GRANT P, SUBRAMANIAN A, ROGERS A J, BLISH C A. A singlecell atlas of the peripheral immune response in patients with severe COVID-19[J]. Nature Medicine, 2020, 26(7): 1070-1076.
    [46] CATANZARO M, FAGIANI F, RACCHI M, CORSINI E, GOVONI S, LANNI C. Immune response in COVID19: addressing a pharmacological challenge by targeting pathways triggered by SARSCoV2[J]. Signal Transduction and Targeted Therapy, 2020, 5(1): 84.
    [47] ZHU L, YANG P, ZHAO Y, ZHUANG Z, WANG Z, SONG R, ZHANG J, LIU C, GAO Q, XU Q, WEI X, SUN H X, YE B, WU Y, ZHANG N, LEI G, YU L, YAN J, DIAO G, MENG F, BAI C, MAO P, YU Y, WANG M, YUAN Y, DENG Q, LI Z, HUANG Y, HU G, LIU Y, WANG X, XU Z, LIU P, BI Y, SHI Y, ZHANG S, CHEN Z, WANG J, XU X, WU G, WANG F S, GAO G F, LIU L, LIU W J. Singlecell sequencing of peripheral mononuclear cells reveals distinct immune response landscapes of COVID-19 and influenza patients[J]. Immunity, 2020, 53(3): 685-696.
    [48] FREYBERG Z, HARVILL E T. Pathogen manipulation of host metabolism: a common strategy for immune evasion[J]. PLoS Pathogens, 2017, 13(12): e1006669.
    [49] EISENREICH W, RUDEL T, HEESEMANN J, GOEBEL W. How viral and intracellular bacterial pathogens reprogram the metabolism of host cells to allow their intracellular replication[J]. Frontiers in Cellular and Infection Microbiology, 2019, 9: 42.
    [50] KIM C H. Immune regulation by microbiome metabolites[J]. Immunology, 2018, 154(2): 220-229.
    [51] NICORA C D, SIMS A C, BLOODSWORTH K J, KIM Y M, MOORE R J, KYLE J E, NAKAYASU E S, METZ T O. Metabolite, protein, and lipid extraction (MPLEx): a method that simultaneously inactivates middle east respiratory syndrome coronavirus and allows analysis of multiple host cell components following infection[J]. Methods in Molecular Biology, 2020, 2 099: 173-194.
    [52] BYERS N M, FLESHMAN A C, PERERA R, MOLINS C R. Metabolomic insights into human arboviral infections: dengue, chikungunya, and zika viruses[J]. Viruses, 2019, 11(3): 225.
    [53] de HAAN N, WUHRER M, RUHAAK L R. Mass spectrometry in clinical glycomics: the path from biomarker identification to clinical implementation[J]. Clinical Mass Spectrometry, 2020, 18: 1-12.
    [54] BOJKOVA D, KLANN K, KOCH B, WIDERA M, KRAUSE D, CIESEK S, CINATL J, MNCH C. Proteomics of SARSCoV2infected host cells reveals therapy targets[J]. Nature, 2020, 583(7 816): 469-472.
    [55] BOUHADDOU M, MEMON D, MEYER B. The global phosphorylation landscape of SARSCoV2 infection[J]. Cell, 2020, 182(3): 685-712.
    [56] LIU S, ZHU L, XIE G, MOK B W Y, YANG Z, DENG S, LAU S Y, CHEN P, WANG P, CHEN H, CAI Z. Potential antiviral target for SARSCoV2: a key early responsive kinase during viral entry[J]. CCS Chemistry, 2021: 559-568.
    [57] KLANN K, BOJKOVA D, TASCHER G, CIESEK S, MNCH C, CINATL J. Growth factor receptor signaling inhibition prevents SARSCoV2 replication[J]. Molecular Cell, 2020, 80(1): 164-174.
    [58] ADAMO R, SONNINO S. Impact of glycoscience in fighting Covid19[J]. Glycoconjugate Journal, 2020, 37(4): 511-512.
    [59] ROBERTS P C, GARTEN W, KLENK H D. Role of conserved glycosylation sites in maturation and transport of influenza a virus hemagglutinin[J]. Journal of Virology, 1993, 67(6): 3048-3060.
    [60] TAUBE S, JIANG M, WOBUS C E. Glycosphingolipids as receptors for nonenveloped viruses[J]. Viruses, 2010, 2(4): 1011-1049.
    [61] WRAPP D, WANG N, CORBETT K S, GOLDSMITH J A, HSIEH C L, ABIONA O, GRAHAM B S, MCLELLAN J S. CryoEM structure of the 2019-nCoV spike in the prefusion conformation[J]. Science, 2020, 367(6 483): 1260-1263.
    [62] ZHAO P, PRAISSMAN J L, GRANT O C, CAI Y, XIAO T, ROSENBALM K E, AOKI K, KELLMAN B P, BRIDGER R, BAROUCH D H, BRINDLEY M A, LEWIS N E, TIEMEYER M, CHEN B, WOODS R J, WELLS L. Virusreceptor interactions of Glycosylated SARSCoV2 spike and human ACE2 receptor[J]. Cell Host and Microbe, 2020, 28(4): 586-601.
    [63] ROMEO A, IACOVELLI F, FALCONI M. Targeting the SARSCoV2 spike glycoprotein prefusion conformation: virtual screening and molecular dynamics simulations applied to the identification of potential fusion inhibitors[J]. Virus Research, 2020, 286: 198 068.
    [64] POH C M, CARISSIMO G, WANG B, AMRUN S N, LEE C Y P, CHEE R S L, FONG S W, YEO N K W, LEE W H, TORRESRUESTA A, LEO Y S, CHEN M I C, TAN S Y, CHAI L Y A, KALIMUDDIN S, KHENG S S G, THIEN S Y, YOUNG B E, LYE D C, HANSON B J, WANG C I, RENIA L, NG L F P. Two linear epitopes on the SARSCoV2 spike protein that elicit neutralising antibodies in COVID19 patients[J]. Nature Communications, 2020.
    [65] ZHANG B Z, HU Y F, CHEN L L, YAU T, TONG Y G, HU J C, CAI J P, CHAN K H, DOU Y, DENG J, WANG X L, HUNG I F N, TO K K W, YUEN K Y, HUANG J D. Mining of epitopes on spike protein of SARSCoV2 from COVID19 patients[J]. Cell Research, 2020, 30(8): 702-704.
    [66] WATANABE Y, BERNDSEN Z T, RAGHWANI J, SEABRIGHT G E, ALLEN J D, MCLELLAN J S, WILSON I A, BOWDEN T A, WARD A B, CRISPIN M, PYBUS O G, MCLELLAN J S, WILSON I A, BOWDEN T A, WARD A B, CRISPIN M. Vulnerabilities in coronavirus glycan shields despite extensive glycosylation[J]. Nature Communications, 2020, 11(1): 957 472.
    [67] PINTO D, PARK Y J, BELTRAMELLO M, WALLS A, TORTORICI M A, BIANCHI S, JACONI S, CULAP K, ZATTA F, de MARCO A, PETER A, GUARINO B, SPREAFICO R, CAMERONI E, CASE J B, CHEN R, HAVENARDAUGHTON C, SNELL G, TELENTI A, VIRGIN H, LANZAVECCHIA A, DIAMOND M, FINK K, VEESLER D, CORTI D. Structural and functional analysis of a potent sarbecovirus neutralizing antibody[J]. bioRxiv, 2020: 023 903.
    [68] CHANDLER K B, COSTELLO C E. Glycomics and glycoproteomics of membrane proteins and cellsurface receptors: present trends and future opportunities[J]. Electrophoresis, 2016, 37(11): 1407-1419.
    [69] CORDWELL S J, THINGHOLM T E. Technologies for plasma membrane proteomics[J]. Proteomics, 2010, 10(4): 611-627.
    [70] MECHREF Y, MADERA M, NOVOTNY M V. Glycoprotein enrichment through lectin affinity techniques[J]. Methods in Molecular Biology, 2008, 424: 373-396.
    [71] WOLLSCHEID B, BAUSCHFLUCK D, HENDERSON C, O’BRIEN R, BIBEL M, SCHIESS R, AEBERSOLD R, WATTS J D. Massspectrometric identification and relative quantification of Nlinked cell surface glycoproteins[J]. Nature Biotechnology, 2009, 27(4): 378-386.
    [72] WADDLING C A, PLUMMER T H, TARENTINO A L, van ROEY P. Structural basis for the substrate specificity of endoβNacetylglucosaminidase F3[J]. Biochemistry, 2000, 39(27): 7878-7885.
    [73] PATEL T, BRUCE J, MERRY A, BIGGE C, PAREKH R, WORMALD M, JAQUES A. Use of hydrazine to release in intact and unreduced form both N- and O-linked oligosaccharides from glycoproteins[J]. Biochemistry, 1993, 32(2): 679-693.
    [74] AMINOFF D, GATHMANN W D, MCLEAN C M, YADOMAE T. Quantitation of oligosaccharides released by the βelimination reaction[J]. Analytical Biochemistry, 1980, 101(1): 44-53.
    [75] SALDOVA R, WILKINSON H. Current methods for the characterization of O-glycans[J]. Journal of Proteome Research, 2020, 19(10): 3890-3905.
    [76] WUHRER M. Glycomics using mass spectrometry[J]. Glycoconjugate Journal, 2013, 30(1): 11-22.
    [77] ZAIA J. Mass spectrometry and glycomics[J]. OMICS, 2010, 14(4): 401-418.
    [78] ZAIA J. Mass spectrometry of oligosaccharides[J]. Mass Spectrometry Reviews, 2004, 23(3): 161-227.
    [79] VANDERSCHAEGHE D, FESTJENS N, DELANGHE J, CALLEWAERT N. Glycome profiling using modern glycomics technology: technical aspects and applications[J]. Biological Chemistry, 2010, 391(2/3): 149-161.
    [80] CIUCANU I, KEREK F. A simple and rapid method for the permethylation of carbohydrates[J]. Carbohydrate Research, 1984, 131(2): 209-217.
    [81] HARVEY D J. Matrixassisted laser desorption/ionization mass spectrometry of carbohydrates[J]. Mass Spectrometry Reviews, 1999, 18(6): 349-450.
    [82] PUJIC' I, PERREAULT H. Recent advancements in glycoproteomic studies: glycopeptide enrichment and derivatization, characterization of glycosylation in SARS CoV2, and interacting glycoproteins[J]. Mass Spectrometry Reviews, 2021, doi: 10.1002/mas.21679.
    [83] SHAO C, LI M, LI X, WEI L, ZHU L, YANG F, JIA L, MU Y, WANG J, GUO Z, ZHANG D, YIN J, WANG Z, SUN W, ZHANG Z, GAO Y. A tool for biomarker discovery in the urinary proteome: a manually curated human and animal urine protein biomarker database[J]. Molecular and Cellular Proteomics, 2011, 10(11): M111.010975.
    [84] de SOUZA G A, GODOY L M F, MANN M. Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors[J]. Genome Biology, 2006, 7(8): R72.
    [85] ADACHI J, KUMAR C, ZHANG Y, OLSEN J V, MANN M. The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins[J]. Genome Biology, 2006, 7(9): R80.
    [86] PILCH B, MANN M. Largescale and highconfidence proteomic analysis of human seminal plasma[J]. Genome Biology, 2006, 7(5): R40.
    [87] KIM M S, PINTO S M, GETNET D. A draft map of the human proteome[J]. Nature, 2014, 509(7 502): 575-581.
    [88] ZHAO M, YANG Y, GUO Z, SHAO C, SUN H, ZHANG Y, SUN Y, LIU Y, SONG Y, ZHANG L, LI Q, LIU J, LI M, GAO Y, SUN W. A comparative proteomics analysis of five body fluids: plasma, urine, cerebrospinal fluid, amniotic fluid, and saliva[J]. ProteomicsClinical Applications, 2018, 12(6): 1 800 008.
    [89] ANDERSON N L. The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum[J]. Clinical Chemistry, 2010, 56(2): 177-185.
    [90] LEE H J, LEE E Y, KWON M S, PAIK Y K. Biomarker discovery from the plasma proteome using multidimensional fractionation proteomics[J]. Current Opinion in Chemical Biology, 2006, 10(1): 42-49.
    [91] WATANABE Y, BOWDEN T A, WILSON I A, CRISPIN M. Exploitation of glycosylation in enveloped virus pathobiology[J]. Biochimica et Biophysica ActaGeneral Subjects, 2019, 1 863(10): 1480-1497.
    [92] SAMUEL M A, DIAMOND M S. Pathogenesis of west nile virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion[J]. Journal of Virology, 2006, 80(19): 9349-9360.
    [93] GERLACH D, GUO Y, de CASTRO C, KIM S H, SCHLATTERER K, XU F F, PEREIRA C, SEEBERGER P H, ALI S, CODE J, SIRISARN W, SCHULTE B, WOLZ C, LARSEN J, MOLINARO A, LEE B L, XIA G, STEHLE T, PESCHEL A. Methicillinresistant Staphylococcus aureus alters cell wall glycosylation to evade immunity[J]. Nature, 2018, 563(7 733): 705-709.
    [94] HULSWIT R J G, LANG Y, BAKKERS M J G, LI W, LI Z, SCHOUTEN A, OPHORST B, VAN KUPPEVELD F J M, BOONS G J, BOSCH B J, HUIZINGA E G, de GROOT R J. Human coronaviruses OC43 and HKU1 bind to 9Oacetylated sialic acids via a conserved receptorbinding site in spike protein domain A[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(7): 2681-2690.
    [95] QING E, HANTAK M, PERLMAN S, GALLAGHER T. Distinct roles for sialoside and protein receptors in coronavirus infection[J]. mBio, 2020, 11(1): e02764-19.
    [96] OU X, LIU Y, LEI X, LI P, MI D, REN L, GUO L, GUO R, CHEN T, HU J, XIANG Z, MU Z, CHEN X, CHEN J, HU K, JIN Q, WANG J, QIAN Z. Characterization of spike glycoprotein of SARSCoV2 on virus entry and its immune crossreactivity with SARSCoV[J]. Nature Communications, 2020, 11(1): 1-12.
    [97] WALLS A C, TORTORICI M A, SNIJDER J, XIONG X, BOSCH B J, REY F A, VEESLER D. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(42): 11157-11162.
    [98] AZAD T, SINGARAVELU R, TAHA Z, JAMIESON T R, BOULTON S, CRUPI M J F, MARTIN N T, BROWN E E F, POUTOU J, GHAHREMANI M, PELIN A, NOURI K, REZAEI R, MARSHALL C B, ENOMOTO M, ARULANANDAM R, ALLUQMANI N, SAMSON R, GINGRAS A C, CAMERON D W, GREER P A, ILKOW C S, DIALLO J S, BELL J C. Nanoluciferase complementationbased bioreporter reveals the importance of Nlinked glycosylation of SARSCoV2 S for viral entry[J]. Molecular Therapy, 2021, 29(6): 1984-2000.
    [99] CHEN W H, DU L, CHAG S M, MA C, TRICOCHE N, TAO X, SEID C A, HUDSPETH E M, LUSTIGMAN S, TSENG C T K, BOTTAZZI M E, HOTEZ P J, ZHAN B, JIANG S. Yeastexpressed recombinant protein of the receptorbinding domain in SARSCoV spike protein with deglycosylated forms as a SARS vaccine candidate[J]. Human Vaccines and Immunotherapeutics, Landes Bioscience, 2014, 10(3): 648-658.
    [100] JENNINGS B C, KORNFELD S, DORAY B. A weak COPI binding motif in the cytoplasmic tail of SARSCoV2 spike glycoprotein is necessary for its cleavage, glycosylation, and localization[J]. FEBS Letters, 2021, doi: 10.1002/18733468.14109.
    [101] BANGARU S, OZOROWSKI G, TURNER H L, ANTANASIJEVIC A, HUANG D, WANG X, TORRES J L, DIEDRICH J K, TIAN J H, PORTNOFF A D, PATEL N, MASSARE M J, YATES J R, NEMAZEE D, PAULSON J C, GLENN G, SMITH G, WARD A B. Structural analysis of fulllength SARSCoV2 spike protein from an advanced vaccine candidate[J]. Science, 2020, 370(6 520): 1089-1094.
    [102] WATANABE Y, ALLEN J D, WRAPP D, MCLELLAN J S, CRISPIN M. Sitespecific glycan analysis of the SARSCoV2 spike[J]. Science, 2020, 369(6 501): 330-333.
    [103] BROTZAKIS Z F, LOHR T, VENDRUSCOLO M. Determination of intermediate state structures in the opening pathway of SARSCoV2 spike using cryoelectron microscopy[J]. Chemical Science, 2021, doi: 10.26434/chemrxiv.13222073.v1.
    [104] VANKADARI N, WILCE J A. Emerging Wuhan (COVID19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26[J]. Emerging Microbes and Infections, 2020, 9(1): 601-604.
    [105] ANDERSEN K G, RAMBAUT A, LIPKIN W I, HOLMES E C, GARRY R F. The proximal origin of SARSCoV2[J]. Nature Medicine, 2020, 26(4): 450-452.
    [106] MILLER L M, BARNES L F, RAAB S A, DRAPER B E, ELBABA T J, LUTOMSKI C A, ROBINSON C V, CLEMMER D E, JARROLD M F. Heterogeneity of glycan processing on trimeric SARSCoV2 spike protein revealed by charge detection mass spectrometry[J]. Journal of the American Chemical Society, 2021, 143: 56.
    [107] ZHANG Y, ZHAO W, MAO Y, CHEN Y, WANG S, ZHONG Y, SU T, GONG M, DU D, LU X, CHENG J, YANG H. Sitespecific Nglycosylation characterization of recombinant SARSCoV2 spike proteins[J]. Molecular & Cellular Proteomics, 2021, 20: 100 058.
    [108] SANDA M, MORRISON L, GOLDMAN R. N and OGlycosylation of the SARSCoV2 spike protein[J]. Analytical Chemistry, 2021, 93(4): 2003-2009.
    [109] SHAJAHAN A, SUPEKAR N T, GLEINICH A S, AZADI P. Deducing the N and Oglycosylation profile of the spike protein of novel coronavirus SARSCoV2[J]. Glycobiology, 2020, 30(12): 981-988.
    [110] XU W, WANG M, YU D, ZHANG X. Variations in SARSCoV2 spike protein cell epitopes and glycosylation profiles during global transmission course of COVID-19[J]. Frontiers in Immunology, 2020, 11: 565 278.
    [111] BRUN J, VASILJEVIC S, GANGADHARAN B, HENSEN M, CHANDRAN A V, HILL M L, KIAPPES J L, DWEK R A, ALONZI D S, STRUWE W B, ZITZMANN N. Analysis of SARSCoV2 spike glycosylation reveals shedding of a vaccine candidate[J]. BioRxiv, 2020, doi: 10.1101/2020.11.16.384594.
    [112] WALLS A C, PARK Y J, TORTORICI M A, WALL A, MCGUIRE A T, VEESLER D. Structure, function, and antigenicity of the SARSCoV2 spike glycoprotein[J]. Cell, 2020, 181(2): 281-292.
    [113] BOUWMAN K M, TOMRIS I, TURNER H L, van der WOUDE R, SHAMORKINA T M, BOSMAN G P, ROCKX B, HERFST S, SNIJDER J, HAAGMANS B L, WARD A B, BOONS G J, de VRIES R P. Multimerization and glycosylationdependent receptor binding of SARSCoV2 spike proteins[J]. PLoS Pathogens, 2021, doi: 10.1371/journal.ppat.1009282.
    [114] YAN R, ZHANG Y, LI Y, XIA L, GUO Y, ZHOU Q. Structural basis for the recognition of SARSCoV2 by fulllength human ACE2[J]. Science, 2020, 367(6 485): 1444-1448.
    [115] YANG Q, HUGHES T A, KELKAR A, YU X, CHENG K, PARK S J, HUANG W C, LOVELL J F, NEELAMEGHAM S. Inhibition of SARSCoV2 viral entry upon blocking N- and O-glycan elaboration[J]. eLife, 2020, 9: 1-44.
    [116] ZHAO Y, ZHAO Z, WANG Y, ZHOU Y, MA Y, ZUO W. Singlecell RNA expression profiling of ACE2, the receptor of SARSCoV2[J]. American Journal of Respiratory and Critical Care Medicine, 2020, 202(5): 756-759.
    [117] ZHANG H, KANG Z, GONG H, XU D, WANG J, LI Z, CUI X, XIAO J, MENG T, ZHOU W, LIU J, XU H. The digestive system is a potential route of 2019nCov infection: a bioinformatics analysis based on singlecell transcriptomes[J]. BioRxiv, 2020, doi: 10.1101/2020.01.30.927806.
    [118] DONOGHUE M, HSIEH F, BARONAS E, GODBOUT K, GOSSELIN M, STAGLIANO N, DONOVAN M, WOOLF B, ROBISON K, JEYASEELAN R, BREITBART R E, ACTON S. A novel angiotensinconverting enzymerelated carboxypeptidase (ACE2) converts angiotensin I to angiotensin 19[J]. Circulation Research, 2000, 87(5): E1-E9.
    [119] ZHANG H, WADA J, HIDA K, TSUCHIYAMA Y, HIRAGUSHI K, SHIKATA K, WANG H, LIN S, KANWAR Y S, MAKINO H. Collectrin, a collecting ductspecific transmembrane glycoprotein, is a novel homolog of ace2 and is developmentally regulated in embryonic kidneys[J]. Journal of Biological Chemistry, 2001, 276(20): 17132-17139.
    [120] WANG K, GHEBLAWI M, OUDIT G Y. Angiotensin converting enzyme 2: a doubleedged sword[J]. Circulation, 2020, 142(5): 426-428.
    [121] PATEL V B, ZHONG J C, GRANT M B, OUDIT G Y. Role of the ACE2/angiotensin 17 axis of the reninangiotensin system in heart failure[J]. Circulation Research, 2016, 118(8): 1313-1326.
    [122] CLARKE N E, TURNER A J. Angiotensinconverting enzyme 2: the first decade[J]. International Journal of Hypertension, 2012: 307315.
    [123] HASHIMOTO T, PERLOT T, REHMAN A, TRICHEREAU J, ISHIGURO H, PAOLINO M, SIGL V, HANADA T, HANADA R, LIPINSKI S, WILD B, CAMARGO S M R, SINGER D, RICHTER A, KUBA K, FUKAMIZU A, SCHREIBER S, CLEVERS H, VERREY F, ROSENSTIEL P, PENNINGER J M. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation[J]. Nature, 2012, 487(7 408): 477-481.
    [124] TURNER A J, HISCOX J A, HOOPER N M. ACE2: from vasopeptidase to SARS virus receptor[J]. Trends in Pharmacological Sciences, 2004, 25(6): 291-294.
    [125] KUHN J H, LI W, CHOE H, FARZAN M. Angiotensinconverting enzyme 2: a functional receptor for SARS coronavirus[J]. Cellular and Molecular Life Sciences, 2004, 61(21): 2738-2743.
    [126] SHAJAHAN A, ARCHERHARTMANN S, SUPEKAR N T, GLEINICH A S, HEISS C, AZADI P. Comprehensive characterization of N- and O-glycosylation of SARSCoV2 human receptor angiotensin converting enzyme 2[J]. Glycobiology, 2021, 31(4): 410-424.
    [127] MEHDIPOUR A R, HUMMER G. Dual nature of human ACE2 glycosylation in binding to SARSCoV2 spike[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, doi: 10.1101/2020.07.09.193680.
    [128] GHEBLAWI M, WANG K, VIVEIROS A, NGUYEN Q, ZHONG J C, TURNER A J, RAIZADA M K, GRANT M B, OUDIT G Y. Angiotensinconverting enzyme 2: SARSCoV2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2[J]. Circulation Research, 2020, 126: 1456-1474.
    [129] COHEN P. Protein phosphorylation and hormone action[J]. Proceedings of the Royal Society B: Biological Sciences, 1988, 234(1 275): 115-144.
    [130] HUNTER T. Protein kinases and phosphatases: the Yin and Yang of protein phosphorylation and signaling[J]. Cell, 1995, 80(2): 225-236.
    [131] ZOLNIEROWICZ S, BOLLEN M. Protein phosphorylation and protein phosphatases, De Panne, Belgium, September 1924, 1999[C]. EMBO Journal, 2000, 19(4): 483-488.
    [132] LANDER E S, LINTON L M, BIRREN B. Initial sequencing and analysis of the human genome[J]. Nature, 2001, 409(6 822): 860-921.
    [133] CRAIG VENTER J, ADAMS M D, MYERS E W. The sequence of the human genome[J]. Science, 2001, 291(5 507): 1 3041 351.
    [134] ARNOTT D, GAWINOWICZ M A, GRANT R A, NEUBERT T A, PACKMAN L C, SPEICHER K D, STONE K, TURCK C W. ABRFPRG03: phosphorylation site determination[J]. Journal of Biomolecular Techniques, 2003, 14(3): 205-215.
    [135] HUMPHREY S J, KARAYEL O, JAMES D E, MANN M. Highthroughput and highsensitivity phosphoproteomics with the EasyPhos platform[J]. Nature Protocols, 2018, 13(9): 1897-1916.
    [136] SUGIYAMA N, MASUDA T, SHINODA K, NAKAMURA A, TOMITA M, ISHIHAMA Y. Phosphopeptide enrichment by aliphatic hydroxy acidmodified metal oxide chromatography for nano-LC-MS/MS in proteomics applications[J]. Molecular and Cellular Proteomics, 2007, 6(6): 1103-1109.
    [137] THINGHOLM T E, JRGENSEN T J D, JENSEN O N, LARSEN M R. Highly selective enrichment of phosphorylated peptides using titanium dioxide[J]. Nature Protocols, 2006, 1(4): 1929-1935.
    [138] ZHOU H, YE M, DONG J, CORRADINI E, CRISTOBAL A, HECK A J R, ZOU H, MOHAMMED S. Robust phosphoproteome enrichment using monodisperse microspherebased immobilized titanium (Ⅳ) ion affinity chromatography[J]. Nature Protocols, 2013, 8(3): 461-480.
    [139] VILLN J, GYGI S P. The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry[J]. Nature Protocols, 2008, 3(10): 1638.
    [140] BATTH T S, FRANCAVILLA C, OLSEN J V. Offline highpH reversedphase fractionation for indepth phosphoproteomics[J]. Journal of Proteome Research, 2014, 13(12): 6176-6186.
    [141] MACEK B, MANN M, OLSEN J V. Global and sitespecific quantitative phosphoproteomics: principles and applications[J]. Annual Review of Pharmacology and Toxicology, 2009, 49: 199-221.
    [142] ABELIN J G, TRANTHAM P D, PENNY S A, PATTERSON A M, WARD S T, HILDEBRAND W H, COBBOLD M, BAI D L, SHABANOWITZ J, HUNT D F. Complementary IMAC enrichment methods for HLAassociated phosphopeptide identification by mass spectrometry[J]. Nature Protocols, 2015, 10(9): 1308-1318.
    [143] TSAI C F, HSU C C, HUNG J N, WANG Y T, CHOONG W K, ZENG M Y, LIN P Y, HONG R W, SUNG T Y, CHEN Y J. Sequential phosphoproteomic enrichment through complementary metaldirected immobilized metal ion affinity chromatography[J]. Analytical Chemistry, 2014, 86(1): 685-693.
    [144] VILASI A, FIUME I, PACE P, ROSSI M, POCSFALVI G. Enrichment specificity of micro and nanosized titanium and zirconium dioxides particles in phosphopeptide mapping[J]. Journal of Mass Spectrometry, 2013, 48(11): 1188-1198.
    [145] KANSHIN E, MICHNICK S W, THIBAULT P. Displacement of N/Qrich peptides on TiO2 beads enhances the depth and coverage of yeast phosphoproteome analyses[J]. Journal of Proteome Research, 2013, 12(6): 2905-2913.
    [146] BERARD A, KROEKER A, MCQUEEN P, COOMBS K M. Methods and approaches to disease mechanisms using systems kinomics[J]. Synthetic and Systems Biotechnology, 2018, 3(1): 34-43.
    [147] MICHALSKI A, DAMOC E, LANGE O, DENISOV E, NOLTING D, MLLER M, VINER R, SCHWARTZ J, REMES P, BELFORD M, DUNYACH J J, COX J, HORNING S, MANN M, MAKAROV A. Ultra high resolution linear ion trap orbitrap mass spectrometer (orbitrap elite) facilitates top down LC MS/MS and versatile peptide fragmentation modes[J]. Molecular and Cellular Proteomics, 2012, 11(3): O111.013698.
    [148] MICHALSKI A, DAMOC E, HAUSCHILD J P, LANGE O, WIEGHAUS A, MAKAROV A, NAGARAJ N, COX J, MANN M, HORNING S. Mass spectrometrybased proteomics using Q exactive, a highperformance benchtop quadrupole orbitrap mass spectrometer[J]. Molecular and Cellular Proteomics, 2011, 10(9): M111.011015.
    [149] SYKA J E P, MARTO J A, BAI D L, HORNING S, SENKO M W, SCHWARTZ J C, UEBERHEIDE B, GARCIA B, BUSBY S, MURATORE T, SHABANOWITZ J, HUNT D F. Novel linear quadrupole ion trap/FT mass spectrometer: performance characterization and use in the comparative analysis of histone H3 post-translational modifications[J]. Journal of Proteome Research, 2004, 3(3): 621-626.
    [150] ZHANG Y, FONSLOW B R, SHAN B, BAEK M C, YATES J R. Protein analysis by shotgun/bottomup proteomics[J]. Chemical Reviews, 2013, 113(4): 2343-2394.
    [151] SENKO M W, REMES P M, CANTERBURY J D, MATHUR R, SONG Q, ELIUK S M, MULLEN C, EARLEY L, HARDMAN M, BLETHROW J D, BUI H, SPECHT A, LANGE O, DENISOV E, MAKAROV A, HORNING S, ZABROUSKOV V. Novel parallelized quadrupole/linear ion trap/orbitrap tribrid mass spectrometer improving proteome coverage and peptide identification rates[J]. Analytical Chemistry, 2013, 85(24): 11710-11714.
    [152] DAVIDSON A D, WILLIAMSON M K, LEWIS S, SHOEMARK D, CARROLL M W, HEESOM K J, ZAMBON M, ELLIS J, LEWIS P A, HISCOX J A, MATTHEWS D A. Characterisation of the transcriptome and proteome of SARS-CoV2 reveals a cell passage induced inframe deletion of the furinlike cleavage site from the spike glycoprotein[J]. Genome Medicine, 2020, 12(1): 1-15.
    [153] FUNG T S, LIU D X. Posttranslational modifications of coronavirus proteins: Roles and function[J]. Future Virology, 2018, 13(6): 405-430.
    [154] BALIBAN R C, DIMAGGIO P A, PLAZASMAYORCA M D, YOUNG N L, GARCIA B A, FLOUDAS C A. A novel approach for untargeted posttranslational modification identification using integer linear optimization and tandem mass spectrometry[J]. Molecular and Cellular Proteomics, 2010, 9(5): 764-779.
    [155] COMPTON P D, KELLEHER N L, GUNAWARDENA J. Estimating the distribution of protein posttranslational modification states by mass spectrometry[J]. Journal of Proteome Research, 2018, 17(8): 2727-2734.
    [156] SUN Z, REN K, ZHANG X, CHEN J, JIANG Z, JIANG J, JI F, OUYANG X, LI L. Mass spectrometry analysis of newly emerging coronavirus HCoV19 spike protein and human ace2 reveals camouflaging glycans and unique post-translational modifications[J]. Engineering, 2020, doi: 10.1016/j.eng.2020.07.014.
    [157] SPRUNG R, CHEN Y, ZHANG K, CHENG D, ZHANG T, PENG J, ZHAO Y. Identification and validation of eukaryotic aspartate and glutamate methylation in proteins[J]. Journal of Proteome Research, 2008, 7(3): 1001-1006.
    [158] LI J, GUO M, TIAN X, WANG X, YANG X, WU P, LIU C, XIAO Z, QU Y, YIN Y, WANG C, ZHANG Y, ZHU Z, LIU Z, PENG C, ZHU T, LIANG Q. Virushost interactome and proteomic survey reveal potential virulence factors influencing SARSCoV2 pathogenesis[J]. Med, 2021, 2(1): 99-112.
    [159] BOCK J O, ORTEA I. Reanalysis of SARSCoV2infected host cell proteomics timecourse data by impact pathway analysis and network analysis: a potential link with inflammatory response[J]. Aging, 2020, 12(12): 11277-11286.
    [160] GORDON D E, JANG G M, BOUHADDOU M. A SARSCoV2 protein interaction map reveals targets for drug repurposing[J]. Nature, 2020, 583(7 816): 459-468.
    [161] SARDAR R, SATISH D, BIRLA S, GUPTA D. Integrative analyses of SARSCoV2 genomes from different geographical locations reveal unique features potentially consequential to hostvirus interaction, pathogenesis and clues for novel therapies[J]. Heliyon, 2020, 6(9): e04658.
    [162] GUPTA R, CHARRON J, STENGER C L, PAINTER J, STEWARD H, COOK T W, FABER W, FRISCH A, LIND E, BAUSS J, LI X, SIRPILLA O, SOEHNLEN X, UNDERWOOD A, HINDS D, MORRIS M, LAMB N, CARCILLO J A, BUPP C, UHAL B D, RAJASEKARAN S, PROKOP J W. SARSCoV2 (COVID19) structural and evolutionary dynamicome: insights into functional evolution and human genomics[J]. Journal of Biological Chemistry, 2020, 295(33): 11742-11753.
    [163] ZHU L, FUNG S Y, XIE G, WONG L Y R, JIN D Y, CAI Z. Identification of lysine acetylation sites on MERSCoV replicase pp1ab[J]. Molecular and Cellular Proteomics, 2020, 19(8): 1303-1309.
    [164] MAHMUD I, GARRETT T J. Mass spectrometry techniques in emerging pathogens studies: COVID19 perspectives[J]. Journal of the American Society for Mass Spectrometry, 2020, 31(10): 2013-2024.
    [165] JUNGREIS I, SEALFON R, KELLIS M. SARSCoV2 gene content and COVID19 mutation impact by comparing 44 Sarbecovirus genomes[J]. Nature Communications, 2021, 12(1): 1-20.
    [166] RARDIN M J, NEWMAN J C, HELD J M, CUSACK M P, SORENSEN D J, LI B, SCHILLING B, MOONEY S D, KAHN C R, VERDIN E, GIBSON B W. Labelfree quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(16): 6 6016 606.
    [167] BAERENFAENGER M, MEYER B. Intact human alphaacid glycoprotein analyzed by ESIqTOFMS: simultaneous determination of the glycan composition of multiple glycosylation sites[J]. Journal of Proteome Research, 2018, 17(11): 3693-3703.
  • 期刊类型引用(2)

    1. 王炎钦,赵瑜. 中国内地和香港地区新型冠状病毒刺突蛋白的基因序列特征及进化分析. 基层医学论坛. 2023(20): 16-19+62 . 百度学术
    2. 吴城昱,于戈,高雅娟. “后疫情时代”寒地养老设施冬季居室PM_(2.5)研究. 当代建筑. 2023(S1): 70-73 . 百度学术

    其他类型引用(3)

图(1)
计量
  • 文章访问数:  683
  • HTML全文浏览量:  22
  • PDF下载量:  554
  • 被引次数: 5
出版历程
  • 刊出日期:  2021-09-19

目录

    /

    返回文章
    返回