[1] |
The World Health Organization (WHO). Pneumonia of unknown causeChina[R]. World Health Organization, 2020.
|
[2] |
CHAN J F W, YUAN S, KOK K H, TO K K W, CHU H, YANG J, XING F, LIU J, YIP C C Y, POON R W S, TSOI H W, LO S K F, CHAN K H, POON V K M, CHAN W M, IP J D, CAI J P, CHENG V C C, CHEN H, HUI C K M, YUEN K Y. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating persontoperson transmission: a study of a family cluster[J]. The Lancet, 2020, 395(10 223): 514-523.
|
[3] |
LU R, ZHAO X, LI J, NIU P, YANG B, WU H, WANG W, SONG H, HUANG B, ZHU N, BI Y, MA X, ZHAN F, WANG L, HU T, ZHOU H, HU Z, ZHOU W, ZHAO L, CHEN J, MENG Y, WANG J, LIN Y, YUAN J, XIE Z, MA J, LIU W J, WANG D, XU W, HOLMES E C, GAO G F, WU G, CHEN W, SHI W, TAN W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding[J]. The Lancet, 2020, 395(10 224): 565-574.
|
[4] |
CHAN J F W, KOK K H, ZHU Z, CHU H, TO K K W, YUAN S, YUEN K Y. Genomic characterization of the 2019 novel humanpathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan[J]. Emerging Microbes and Infections, 2020, 9(1): 221-236.
|
[5] |
WU F, ZHAO S, YU B, CHEN Y M, WANG W, SONG Z G, HU Y, TAO Z W, TIAN J H, PEI Y Y, YUAN M L, ZHANG Y L, DAI F H, LIU Y, WANG Q M, ZHENG J J, XU L, HOLMES E C, ZHANG Y Z. A new coronavirus associated with human respiratory disease in China[J]. Nature, 2020, 579(7798): 265-269.
|
[6] |
LAI C C, SHIH T P, KO W C, TANG H J, HSUEH P R. Severe acute respiratory syndrome coronavirus 2 (SARSCoV2) and coronavirus disease2019 (COVID-19): the epidemic and the challenges[J]. International Journal of Antimicrobial Agents, 2020, 55(3): 105 924.
|
[7] |
GRIFONI A, SIDNEY J, ZHANG Y, SCHEUERMANN R H, PETERS B, SETTE A. A sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARSCoV2[J]. Cell Host and Microbe, 2020, 27(4): 671-680.
|
[8] |
DONG E, DU H, GARDNER L. An interactive webbased dashboard to track COVID19 in real time[J]. The Lancet Infectious Diseases, 2020, 20(5): 533-534.
|
[9] |
YUKI K, FUJIOGI M, KOUTSOGIANNAKI S. COVID-19 pathophysiology: a review[J]. Clinical Immunology, 2020, 215: 108 427.
|
[10] |
BATTAGELLO D S, DRAGUNAS G, KLEIN M O, AYUB A L P, VELLOSO F J, CORREA R G. Unpuzzling COVID19: tissuerelated signaling pathways associated with SARSCoV2 infection and transmission[J]. Clinical Science, 2020, 134(16): 2137-2160.
|
[11] |
WOODS J A, HUTCHINSON N T, POWERS S K, ROBERTS W O, GOMEZCABRERA M C, RADAK Z, BERKES I, BOROS A, BOLDOGH I, LEEUWENBURGH C, COELHOJU'NIOR H J, MARZETTI E, CHENG Y, LIU J, DURSTINE J L, SUN J, JI L L. The COVID-19 pandemic and physical activity[J]. Sports Medicine and Health Science, 2020(2): 55-64.
|
[12] |
LIYA G, YUGUANG W, JIAN L, HUAIPING Y, XUE H, JIANWEI H, JIAJU M, YOURAN L, CHEN M, YIQING J. Studies on viral pneumonia related to novel coronavirus SARSCoV2, SARSCoV, and MERSCoV: a literature review[J]. APMIS, 2020, 128(6): 423-432.
|
[13] |
HOFFMANN M, KLEINEWEBER H, SCHROEDER S, KRGER N, HERRLER T, ERICHSEN S, SCHIERGENS T S, HERRLER G, WU N H, NITSCHE A, MLLER M A, DROSTEN C, PHLMANN S. SARSCoV2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell, 2020, 181(2): 271-280.
|
[14] |
VARGA Z, FLAMMER A J, STEIGER P, HABERECKER M, ANDERMATT R, ZINKERNAGEL A S, MEHRA M R, SCHUEPBACH R A, RUSCHITZKA F, MOCH H. Endothelial cell infection and endotheliitis in COVID-19[J]. The Lancet, 2020, 395(10 234): 1417-1418.
|
[15] |
GU J, HAN B, WANG J. COVID19: gastrointestinal manifestations and potential fecaloral transmission[J]. Gastroenterology, 2020, 158(6): 1518-1519.
|
[16] |
MENNI C, VALDES A M, FREIDIN M B, GANESH S, ELSAYED MOUSTAFA J S, VISCONTI A, HYSI P, BOWYER R C E, MANGINO M, FALCHI M, WOLF J, STEVES C J, SPECTOR T D. Loss of smell and taste in combination with other symptoms is a strong predictor of COVID19 infection[J]. MedRxiv, 2020, doi: 10.1101/2020.04.05.20048421.
|
[17] |
BACKER J A, KLINKENBERG D, WALLINGA J. Incubation period of 2019 novel coronavirus (2019nCoV) infections among travellers from Wuhan, China, 2028 January 2020[J]. Eurosurveillance, 2020, doi: 10.2807/15607917.ES.2020.25.5.2000062.
|
[18] |
WANG W, TANG J, WEI F. Updated understanding of the outbreak of 2019 novel coronavirus (2019nCoV) in Wuhan, China[J]. Journal of Medical Virology, 2020, 92(4): 441-447.
|
[19] |
SABINO E C, BUSS L F, CARVALHO M P S, PRETE C A, CRISPIM M A E, FRAIJI N A, PEREIRA R H M, PARAG K V, DA SILVA PEIXOTO P, KRAEMER M U G, OIKAWA M K, SALOMON T, CUCUNUBA Z M, CASTRO M C, de SOUZA SANTOS A A, NASCIMENTO V H, PEREIRA H S, FERGUSON N M, PYBUS O G, KUCHARSKI A, BUSCH M P, DYE C, FARIA N R. Resurgence of COVID19 in Manaus, Brazil, despite high seroprevalence[J]. The Lancet, 2021, 397(10 273): 452-455.
|
[20] |
WIBMER C K, AYRES F, HERMANUS T, MADZIVHANDILA M, KGAGUDI P, OOSTHUYSEN B, LAMBSON B E, de OLIVEIRA T, VERMEULEN M, van der BERG K, ROSSOUW T, BOSWELL M, UECKERMANN V, MEIRING S, VON GOTTBERG A, COHEN C, MORRIS L, BHIMAN J N, MOORE P L. SARSCoV2 501Y.V2 escapes neutralization by South African COVID19 donor plasma[J]. Nature Medicine, Nature Research, 2021, 27(4): 622-625.
|
[21] |
DAVIES N G, ABBOTT S, BARNARD R C, JARVIS C I, KUCHARSKI A J, MUNDAY J D, PEARSON C A B, RUSSELL T W, TULLY D C, WASHBURNE A D, WENSELEERS T, GIMMA A, WAITES W, WONG K L M, VAN ZANDVOORT K, SILVERMAN J D, DIAZORDAZ K, KEOGH R, EGGO R M, FUNK S, JIT M, ATKINS K E, EDMUNDS W J. Estimated transmissibility and impact of SARSCoV2 lineage B.1.1.7 in England[J]. Science, 2021, 372(6538): 3055.
|
[22] |
SHU T, NING W, WU D, XU J, HAN Q, HUANG M, ZOU X, YANG Q, YUAN Y, BIE Y, PAN S, MU J, HAN Y, YANG X, ZHOU H, LI R, REN Y, CHEN X, YAO S, QIU Y, ZHANG D Y, XUE Y, SHANG Y, ZHOU X. Plasma proteomics identify biomarkers and pathogenesis of COVID19[J]. Immunity, 2020, 53(5): 1 108.
|
[23] |
SHEN B, YI X, SUN Y, BI X, DU J, ZHANG C, QUAN S, ZHANG F, SUN R, QIAN L, GE W, LIU W, LIANG S, CHEN H H, ZHANG Y, LI J, XU J, HE Z, CHEN B, WANG J, YAN H, ZHENG Y, WANG D, ZHU J, KONG Z, KANG Z, LIANG X, DING X, RUAN G, XIANG N, CAI X, GAO H, LI L, LI S, XIAO Q, LU T, ZHU Y, LIU H, CHEN H H, GUO T. Proteomic and metabolomic characterization of COVID-19 patient sera[J]. Cell, 2020, 182(1): 59-72.
|
[24] |
NIE X, QIAN L, SUN R, HUANG B, DONG X, XIAO Q, ZHANG Q, LU T, YUE L, CHEN S, LI X, SUN Y, LI L, XU L, LI Y, YANG M, XUE Z, LIANG S, DING X, YUAN C, PENG L, LIU W, YI X, LYU M, XIAO G, XU X, GE W, HE J, FAN J, WU J, LUO M, CHANG X, PAN H, CAI X, ZHOU J, YU J, GAO H, XIE M, WANG S, RUAN G, CHEN H, SU H, MEI H, LUO D, ZHAO D, XU F, ZHU Y, XIA J, HU Y, GUO T. Multi-organ proteomic landscape of COVID-19 autopsies[J]. Cell, 2021, 184(3): 775-791.
|
[25] |
HTTENHAIN R, MALMSTRM J, PICOTTI P, AEBERSOLD R. Perspectives of targeted mass spectrometry for protein biomarker verification[J]. Current Opinion in Chemical Biology, 2009, 13(5/6): 518-525.
|
[26] |
BAHIR I, FROMER M, PRAT Y, LINIAL M. Viral adaptation to host: a proteomebased analysis of codon usage and amino acid preferences[J]. Molecular Systems Biology, 2009, 5: 311.
|
[27] |
LONG J S, MISTRY B, HASLAM S M, BARCLAY W S. Host and viral determinants of influenza a virus species specificity[J]. Nature Reviews Microbiology, 2019, 17(2): 67-81.
|
[28] |
TAUBENBERGER J K, KASH J C. Influenza virus evolution, host adaptation, and pandemic formation[J]. Cell Host and Microbe, 2010, 7(6): 440-451.
|
[29] |
DUYEN H T L, NGOC T V, HA D T, HANG V T T, KIEU N T T, YOUNG P R, FARRAR J J, SIMMONS C P, WOLBERS M, WILLS B A. Kinetics of plasma viremia and soluble nonstructural protein 1 concentrations in dengue: Differential effects according to serotype and immune status[J]. Journal of Infectious Diseases, 2011, 203(9): 1292-1300.
|
[30] |
BRAUN L, BRENIERPINCHART M P, YOGAVEL M, CURTVARESANO A, CURTBERTINI R L, HUSSAIN T, KIEFFERJAQUINOD S, COUTE Y, PELLOUX H, TARDIEUX I, SHARMA A, BELRHALI H, BOUGDOUR A, HAKIMI M A. A Toxoplasma dense granule protein, GRA24, modulates the early immune response to infection by promoting a direct and sustained host p38 MAPK activation[J]. Journal of Experimental Medicine, 2013, 210(10): 2071-2086.
|
[31] |
SCATURRO P, KASTNER A L, PICHLMAIR A. Chasing intracellular Zika virus using proteomics[J]. Viruses, 2019, 11(9): 878.
|
[32] |
GARCADORIVAL I, WU W, ARMSTRONG S D, BARR J N, CARROLL M W, HEWSON R, HISCOX J A. Elucidation of the cellular interactome of Ebola virus nucleoprotein and identification of therapeutic targets[J]. Journal of Proteome Research, 2016, 15(12): 4290-4303.
|
[33] |
STALIN RAJ V, LAMERS M M, SMITS S L, DEMMERS J A A, MOU H, BOSCH B J, HAAGMANS B L. Identification of protein receptors for coronaviruses by mass spectrometry[J]. Coronaviruses: Methods and Protocols, 2015, 1 282(165): 165-182.
|
[34] |
PRABAKARAN S, LIPPENS G, STEEN H, GUNAWARDENA J. Posttranslational modification: nature’s escape from genetic imprisonment and the basis for dynamic information encoding[J]. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2012, 4(6): 565-583.
|
[35] |
WALLS A C, XIONG X, YOUNGJUN P, TORTORICI M A, JOOST S, JOEL Q, ELISABETTA C, ROBIN G, MIAN D, ANTONIO L. Unexpected receptor functional mimicry elucidates activation of coronavirus fusion[J]. Cell, 2019, 176(5): 1026-1039.
|
[36] |
IANNI M, MANERBA M, DI STEFANO G, PORCELLINI E, CHIAPPELLI M, CARBONE I, LICASTRO F. Altered glycosylation profile of purified plasma ACT from Alzheimer’s disease[J]. Immunity and Ageing, 2010, 7(Suppl 1): S6.
|
[37] |
de LEOZ M L A, YOUNG L J T, AN H J, KRONEWITTER S R, KIM J, MIYAMOTO S, BOROWSKY A D, CHEW H K, LEBRILLA C B. Highmannose glycans are elevated during breast cancer progression[J]. Molecular and Cellular Proteomics, 2011, 10(1): M110.002717.
|
[38] |
PTOLEMY A S, RIFAI N. What is a biomarker? Research investments and lack of clinical integration necessitate a review of biomarker terminology and validation schema[J]. Scandinavian Journal of Clinical and Laboratory Investigation, 2010, 70(242): 6-14.
|
[39] |
COHEN P. The origins of protein phosphorylation[J]. Nature Cell Biology, 2002, 4(5): 127-130.
|
[40] |
YANG D, CHU H, HOU Y, CHAI Y, SHUAI H, LEE A C Y, ZHANG X, WANG Y, HU B, HUANG X, YUEN T T T, CAI J P, ZHOU J, YUAN S, ZHANG A J, CHAN J F W, YUEN K Y. Attenuated interferon and proinflammatory response in SARSCoV2infected human dendritic cells is associated with viral antagonism of STAT1 phosphorylation[J]. Journal of Infectious Diseases, 2020, 222(5): 734-745.
|
[41] |
ABINADER E O, ABINADER M V M. Inflamed host: serine/threonine phosphorylation signaling pathway that links obesity and insulin resistance and worse prognosis for COVID-19[J]. SSRN Electronic Journal, 2020, doi: 10.2139/ssrn.3573808.
|
[42] |
LIAO J, FAN S, CHEN J, WU J, XU S, GUO Y, LI C, ZHANG X, WU C, MOU H, SONG C, LI F, WU G, ZHANG J, GUO L, LIU H, LV J, XU L, LANG C. Epidemiological and clinical characteristics of COVID19 in adolescents and young adults[J]. The Innovation, 2020, 1(1): 100 001.
|
[43] |
CLARK A, JIT M, WARRENGASH C. Global, regional, and national estimates of the population at increased risk of severe COVID19 due to underlying health conditions in 2020: a modelling study[J]. The Lancet Global Health, 2020, 8(8): 1003-1017.
|
[44] |
ONG E Z, CHAN Y F Z, LEONG W Y, LEE N M Y, KALIMUDDIN S, HAJA MOHIDEEN S M, CHAN K S, TAN A T, BERTOLETTI A, OOI E E, LOW J G H. A dynamic immune response shapes COVID-19 progression[J]. Cell Host and Microbe, 2020, 27(6): 879-882.
|
[45] |
WILK A J, RUSTAGI A, ZHAO N Q, ROQUE J, MARTNEZCOLN G J, MCKECHNIE J L, IVISON G T, RANGANATH T, VERGARA R, HOLLIS T, SIMPSON L J, GRANT P, SUBRAMANIAN A, ROGERS A J, BLISH C A. A singlecell atlas of the peripheral immune response in patients with severe COVID-19[J]. Nature Medicine, 2020, 26(7): 1070-1076.
|
[46] |
CATANZARO M, FAGIANI F, RACCHI M, CORSINI E, GOVONI S, LANNI C. Immune response in COVID19: addressing a pharmacological challenge by targeting pathways triggered by SARSCoV2[J]. Signal Transduction and Targeted Therapy, 2020, 5(1): 84.
|
[47] |
ZHU L, YANG P, ZHAO Y, ZHUANG Z, WANG Z, SONG R, ZHANG J, LIU C, GAO Q, XU Q, WEI X, SUN H X, YE B, WU Y, ZHANG N, LEI G, YU L, YAN J, DIAO G, MENG F, BAI C, MAO P, YU Y, WANG M, YUAN Y, DENG Q, LI Z, HUANG Y, HU G, LIU Y, WANG X, XU Z, LIU P, BI Y, SHI Y, ZHANG S, CHEN Z, WANG J, XU X, WU G, WANG F S, GAO G F, LIU L, LIU W J. Singlecell sequencing of peripheral mononuclear cells reveals distinct immune response landscapes of COVID-19 and influenza patients[J]. Immunity, 2020, 53(3): 685-696.
|
[48] |
FREYBERG Z, HARVILL E T. Pathogen manipulation of host metabolism: a common strategy for immune evasion[J]. PLoS Pathogens, 2017, 13(12): e1006669.
|
[49] |
EISENREICH W, RUDEL T, HEESEMANN J, GOEBEL W. How viral and intracellular bacterial pathogens reprogram the metabolism of host cells to allow their intracellular replication[J]. Frontiers in Cellular and Infection Microbiology, 2019, 9: 42.
|
[50] |
KIM C H. Immune regulation by microbiome metabolites[J]. Immunology, 2018, 154(2): 220-229.
|
[51] |
NICORA C D, SIMS A C, BLOODSWORTH K J, KIM Y M, MOORE R J, KYLE J E, NAKAYASU E S, METZ T O. Metabolite, protein, and lipid extraction (MPLEx): a method that simultaneously inactivates middle east respiratory syndrome coronavirus and allows analysis of multiple host cell components following infection[J]. Methods in Molecular Biology, 2020, 2 099: 173-194.
|
[52] |
BYERS N M, FLESHMAN A C, PERERA R, MOLINS C R. Metabolomic insights into human arboviral infections: dengue, chikungunya, and zika viruses[J]. Viruses, 2019, 11(3): 225.
|
[53] |
de HAAN N, WUHRER M, RUHAAK L R. Mass spectrometry in clinical glycomics: the path from biomarker identification to clinical implementation[J]. Clinical Mass Spectrometry, 2020, 18: 1-12.
|
[54] |
BOJKOVA D, KLANN K, KOCH B, WIDERA M, KRAUSE D, CIESEK S, CINATL J, MNCH C. Proteomics of SARSCoV2infected host cells reveals therapy targets[J]. Nature, 2020, 583(7 816): 469-472.
|
[55] |
BOUHADDOU M, MEMON D, MEYER B. The global phosphorylation landscape of SARSCoV2 infection[J]. Cell, 2020, 182(3): 685-712.
|
[56] |
LIU S, ZHU L, XIE G, MOK B W Y, YANG Z, DENG S, LAU S Y, CHEN P, WANG P, CHEN H, CAI Z. Potential antiviral target for SARSCoV2: a key early responsive kinase during viral entry[J]. CCS Chemistry, 2021: 559-568.
|
[57] |
KLANN K, BOJKOVA D, TASCHER G, CIESEK S, MNCH C, CINATL J. Growth factor receptor signaling inhibition prevents SARSCoV2 replication[J]. Molecular Cell, 2020, 80(1): 164-174.
|
[58] |
ADAMO R, SONNINO S. Impact of glycoscience in fighting Covid19[J]. Glycoconjugate Journal, 2020, 37(4): 511-512.
|
[59] |
ROBERTS P C, GARTEN W, KLENK H D. Role of conserved glycosylation sites in maturation and transport of influenza a virus hemagglutinin[J]. Journal of Virology, 1993, 67(6): 3048-3060.
|
[60] |
TAUBE S, JIANG M, WOBUS C E. Glycosphingolipids as receptors for nonenveloped viruses[J]. Viruses, 2010, 2(4): 1011-1049.
|
[61] |
WRAPP D, WANG N, CORBETT K S, GOLDSMITH J A, HSIEH C L, ABIONA O, GRAHAM B S, MCLELLAN J S. CryoEM structure of the 2019-nCoV spike in the prefusion conformation[J]. Science, 2020, 367(6 483): 1260-1263.
|
[62] |
ZHAO P, PRAISSMAN J L, GRANT O C, CAI Y, XIAO T, ROSENBALM K E, AOKI K, KELLMAN B P, BRIDGER R, BAROUCH D H, BRINDLEY M A, LEWIS N E, TIEMEYER M, CHEN B, WOODS R J, WELLS L. Virusreceptor interactions of Glycosylated SARSCoV2 spike and human ACE2 receptor[J]. Cell Host and Microbe, 2020, 28(4): 586-601.
|
[63] |
ROMEO A, IACOVELLI F, FALCONI M. Targeting the SARSCoV2 spike glycoprotein prefusion conformation: virtual screening and molecular dynamics simulations applied to the identification of potential fusion inhibitors[J]. Virus Research, 2020, 286: 198 068.
|
[64] |
POH C M, CARISSIMO G, WANG B, AMRUN S N, LEE C Y P, CHEE R S L, FONG S W, YEO N K W, LEE W H, TORRESRUESTA A, LEO Y S, CHEN M I C, TAN S Y, CHAI L Y A, KALIMUDDIN S, KHENG S S G, THIEN S Y, YOUNG B E, LYE D C, HANSON B J, WANG C I, RENIA L, NG L F P. Two linear epitopes on the SARSCoV2 spike protein that elicit neutralising antibodies in COVID19 patients[J]. Nature Communications, 2020.
|
[65] |
ZHANG B Z, HU Y F, CHEN L L, YAU T, TONG Y G, HU J C, CAI J P, CHAN K H, DOU Y, DENG J, WANG X L, HUNG I F N, TO K K W, YUEN K Y, HUANG J D. Mining of epitopes on spike protein of SARSCoV2 from COVID19 patients[J]. Cell Research, 2020, 30(8): 702-704.
|
[66] |
WATANABE Y, BERNDSEN Z T, RAGHWANI J, SEABRIGHT G E, ALLEN J D, MCLELLAN J S, WILSON I A, BOWDEN T A, WARD A B, CRISPIN M, PYBUS O G, MCLELLAN J S, WILSON I A, BOWDEN T A, WARD A B, CRISPIN M. Vulnerabilities in coronavirus glycan shields despite extensive glycosylation[J]. Nature Communications, 2020, 11(1): 957 472.
|
[67] |
PINTO D, PARK Y J, BELTRAMELLO M, WALLS A, TORTORICI M A, BIANCHI S, JACONI S, CULAP K, ZATTA F, de MARCO A, PETER A, GUARINO B, SPREAFICO R, CAMERONI E, CASE J B, CHEN R, HAVENARDAUGHTON C, SNELL G, TELENTI A, VIRGIN H, LANZAVECCHIA A, DIAMOND M, FINK K, VEESLER D, CORTI D. Structural and functional analysis of a potent sarbecovirus neutralizing antibody[J]. bioRxiv, 2020: 023 903.
|
[68] |
CHANDLER K B, COSTELLO C E. Glycomics and glycoproteomics of membrane proteins and cellsurface receptors: present trends and future opportunities[J]. Electrophoresis, 2016, 37(11): 1407-1419.
|
[69] |
CORDWELL S J, THINGHOLM T E. Technologies for plasma membrane proteomics[J]. Proteomics, 2010, 10(4): 611-627.
|
[70] |
MECHREF Y, MADERA M, NOVOTNY M V. Glycoprotein enrichment through lectin affinity techniques[J]. Methods in Molecular Biology, 2008, 424: 373-396.
|
[71] |
WOLLSCHEID B, BAUSCHFLUCK D, HENDERSON C, O’BRIEN R, BIBEL M, SCHIESS R, AEBERSOLD R, WATTS J D. Massspectrometric identification and relative quantification of Nlinked cell surface glycoproteins[J]. Nature Biotechnology, 2009, 27(4): 378-386.
|
[72] |
WADDLING C A, PLUMMER T H, TARENTINO A L, van ROEY P. Structural basis for the substrate specificity of endoβNacetylglucosaminidase F3[J]. Biochemistry, 2000, 39(27): 7878-7885.
|
[73] |
PATEL T, BRUCE J, MERRY A, BIGGE C, PAREKH R, WORMALD M, JAQUES A. Use of hydrazine to release in intact and unreduced form both N- and O-linked oligosaccharides from glycoproteins[J]. Biochemistry, 1993, 32(2): 679-693.
|
[74] |
AMINOFF D, GATHMANN W D, MCLEAN C M, YADOMAE T. Quantitation of oligosaccharides released by the βelimination reaction[J]. Analytical Biochemistry, 1980, 101(1): 44-53.
|
[75] |
SALDOVA R, WILKINSON H. Current methods for the characterization of O-glycans[J]. Journal of Proteome Research, 2020, 19(10): 3890-3905.
|
[76] |
WUHRER M. Glycomics using mass spectrometry[J]. Glycoconjugate Journal, 2013, 30(1): 11-22.
|
[77] |
ZAIA J. Mass spectrometry and glycomics[J]. OMICS, 2010, 14(4): 401-418.
|
[78] |
ZAIA J. Mass spectrometry of oligosaccharides[J]. Mass Spectrometry Reviews, 2004, 23(3): 161-227.
|
[79] |
VANDERSCHAEGHE D, FESTJENS N, DELANGHE J, CALLEWAERT N. Glycome profiling using modern glycomics technology: technical aspects and applications[J]. Biological Chemistry, 2010, 391(2/3): 149-161.
|
[80] |
CIUCANU I, KEREK F. A simple and rapid method for the permethylation of carbohydrates[J]. Carbohydrate Research, 1984, 131(2): 209-217.
|
[81] |
HARVEY D J. Matrixassisted laser desorption/ionization mass spectrometry of carbohydrates[J]. Mass Spectrometry Reviews, 1999, 18(6): 349-450.
|
[82] |
PUJIC' I, PERREAULT H. Recent advancements in glycoproteomic studies: glycopeptide enrichment and derivatization, characterization of glycosylation in SARS CoV2, and interacting glycoproteins[J]. Mass Spectrometry Reviews, 2021, doi: 10.1002/mas.21679.
|
[83] |
SHAO C, LI M, LI X, WEI L, ZHU L, YANG F, JIA L, MU Y, WANG J, GUO Z, ZHANG D, YIN J, WANG Z, SUN W, ZHANG Z, GAO Y. A tool for biomarker discovery in the urinary proteome: a manually curated human and animal urine protein biomarker database[J]. Molecular and Cellular Proteomics, 2011, 10(11): M111.010975.
|
[84] |
de SOUZA G A, GODOY L M F, MANN M. Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors[J]. Genome Biology, 2006, 7(8): R72.
|
[85] |
ADACHI J, KUMAR C, ZHANG Y, OLSEN J V, MANN M. The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins[J]. Genome Biology, 2006, 7(9): R80.
|
[86] |
PILCH B, MANN M. Largescale and highconfidence proteomic analysis of human seminal plasma[J]. Genome Biology, 2006, 7(5): R40.
|
[87] |
KIM M S, PINTO S M, GETNET D. A draft map of the human proteome[J]. Nature, 2014, 509(7 502): 575-581.
|
[88] |
ZHAO M, YANG Y, GUO Z, SHAO C, SUN H, ZHANG Y, SUN Y, LIU Y, SONG Y, ZHANG L, LI Q, LIU J, LI M, GAO Y, SUN W. A comparative proteomics analysis of five body fluids: plasma, urine, cerebrospinal fluid, amniotic fluid, and saliva[J]. ProteomicsClinical Applications, 2018, 12(6): 1 800 008.
|
[89] |
ANDERSON N L. The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum[J]. Clinical Chemistry, 2010, 56(2): 177-185.
|
[90] |
LEE H J, LEE E Y, KWON M S, PAIK Y K. Biomarker discovery from the plasma proteome using multidimensional fractionation proteomics[J]. Current Opinion in Chemical Biology, 2006, 10(1): 42-49.
|
[91] |
WATANABE Y, BOWDEN T A, WILSON I A, CRISPIN M. Exploitation of glycosylation in enveloped virus pathobiology[J]. Biochimica et Biophysica ActaGeneral Subjects, 2019, 1 863(10): 1480-1497.
|
[92] |
SAMUEL M A, DIAMOND M S. Pathogenesis of west nile virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion[J]. Journal of Virology, 2006, 80(19): 9349-9360.
|
[93] |
GERLACH D, GUO Y, de CASTRO C, KIM S H, SCHLATTERER K, XU F F, PEREIRA C, SEEBERGER P H, ALI S, CODE J, SIRISARN W, SCHULTE B, WOLZ C, LARSEN J, MOLINARO A, LEE B L, XIA G, STEHLE T, PESCHEL A. Methicillinresistant Staphylococcus aureus alters cell wall glycosylation to evade immunity[J]. Nature, 2018, 563(7 733): 705-709.
|
[94] |
HULSWIT R J G, LANG Y, BAKKERS M J G, LI W, LI Z, SCHOUTEN A, OPHORST B, VAN KUPPEVELD F J M, BOONS G J, BOSCH B J, HUIZINGA E G, de GROOT R J. Human coronaviruses OC43 and HKU1 bind to 9Oacetylated sialic acids via a conserved receptorbinding site in spike protein domain A[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(7): 2681-2690.
|
[95] |
QING E, HANTAK M, PERLMAN S, GALLAGHER T. Distinct roles for sialoside and protein receptors in coronavirus infection[J]. mBio, 2020, 11(1): e02764-19.
|
[96] |
OU X, LIU Y, LEI X, LI P, MI D, REN L, GUO L, GUO R, CHEN T, HU J, XIANG Z, MU Z, CHEN X, CHEN J, HU K, JIN Q, WANG J, QIAN Z. Characterization of spike glycoprotein of SARSCoV2 on virus entry and its immune crossreactivity with SARSCoV[J]. Nature Communications, 2020, 11(1): 1-12.
|
[97] |
WALLS A C, TORTORICI M A, SNIJDER J, XIONG X, BOSCH B J, REY F A, VEESLER D. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(42): 11157-11162.
|
[98] |
AZAD T, SINGARAVELU R, TAHA Z, JAMIESON T R, BOULTON S, CRUPI M J F, MARTIN N T, BROWN E E F, POUTOU J, GHAHREMANI M, PELIN A, NOURI K, REZAEI R, MARSHALL C B, ENOMOTO M, ARULANANDAM R, ALLUQMANI N, SAMSON R, GINGRAS A C, CAMERON D W, GREER P A, ILKOW C S, DIALLO J S, BELL J C. Nanoluciferase complementationbased bioreporter reveals the importance of Nlinked glycosylation of SARSCoV2 S for viral entry[J]. Molecular Therapy, 2021, 29(6): 1984-2000.
|
[99] |
CHEN W H, DU L, CHAG S M, MA C, TRICOCHE N, TAO X, SEID C A, HUDSPETH E M, LUSTIGMAN S, TSENG C T K, BOTTAZZI M E, HOTEZ P J, ZHAN B, JIANG S. Yeastexpressed recombinant protein of the receptorbinding domain in SARSCoV spike protein with deglycosylated forms as a SARS vaccine candidate[J]. Human Vaccines and Immunotherapeutics, Landes Bioscience, 2014, 10(3): 648-658.
|
[100] |
JENNINGS B C, KORNFELD S, DORAY B. A weak COPI binding motif in the cytoplasmic tail of SARSCoV2 spike glycoprotein is necessary for its cleavage, glycosylation, and localization[J]. FEBS Letters, 2021, doi: 10.1002/18733468.14109.
|
[101] |
BANGARU S, OZOROWSKI G, TURNER H L, ANTANASIJEVIC A, HUANG D, WANG X, TORRES J L, DIEDRICH J K, TIAN J H, PORTNOFF A D, PATEL N, MASSARE M J, YATES J R, NEMAZEE D, PAULSON J C, GLENN G, SMITH G, WARD A B. Structural analysis of fulllength SARSCoV2 spike protein from an advanced vaccine candidate[J]. Science, 2020, 370(6 520): 1089-1094.
|
[102] |
WATANABE Y, ALLEN J D, WRAPP D, MCLELLAN J S, CRISPIN M. Sitespecific glycan analysis of the SARSCoV2 spike[J]. Science, 2020, 369(6 501): 330-333.
|
[103] |
BROTZAKIS Z F, LOHR T, VENDRUSCOLO M. Determination of intermediate state structures in the opening pathway of SARSCoV2 spike using cryoelectron microscopy[J]. Chemical Science, 2021, doi: 10.26434/chemrxiv.13222073.v1.
|
[104] |
VANKADARI N, WILCE J A. Emerging Wuhan (COVID19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26[J]. Emerging Microbes and Infections, 2020, 9(1): 601-604.
|
[105] |
ANDERSEN K G, RAMBAUT A, LIPKIN W I, HOLMES E C, GARRY R F. The proximal origin of SARSCoV2[J]. Nature Medicine, 2020, 26(4): 450-452.
|
[106] |
MILLER L M, BARNES L F, RAAB S A, DRAPER B E, ELBABA T J, LUTOMSKI C A, ROBINSON C V, CLEMMER D E, JARROLD M F. Heterogeneity of glycan processing on trimeric SARSCoV2 spike protein revealed by charge detection mass spectrometry[J]. Journal of the American Chemical Society, 2021, 143: 56.
|
[107] |
ZHANG Y, ZHAO W, MAO Y, CHEN Y, WANG S, ZHONG Y, SU T, GONG M, DU D, LU X, CHENG J, YANG H. Sitespecific Nglycosylation characterization of recombinant SARSCoV2 spike proteins[J]. Molecular & Cellular Proteomics, 2021, 20: 100 058.
|
[108] |
SANDA M, MORRISON L, GOLDMAN R. N and OGlycosylation of the SARSCoV2 spike protein[J]. Analytical Chemistry, 2021, 93(4): 2003-2009.
|
[109] |
SHAJAHAN A, SUPEKAR N T, GLEINICH A S, AZADI P. Deducing the N and Oglycosylation profile of the spike protein of novel coronavirus SARSCoV2[J]. Glycobiology, 2020, 30(12): 981-988.
|
[110] |
XU W, WANG M, YU D, ZHANG X. Variations in SARSCoV2 spike protein cell epitopes and glycosylation profiles during global transmission course of COVID-19[J]. Frontiers in Immunology, 2020, 11: 565 278.
|
[111] |
BRUN J, VASILJEVIC S, GANGADHARAN B, HENSEN M, CHANDRAN A V, HILL M L, KIAPPES J L, DWEK R A, ALONZI D S, STRUWE W B, ZITZMANN N. Analysis of SARSCoV2 spike glycosylation reveals shedding of a vaccine candidate[J]. BioRxiv, 2020, doi: 10.1101/2020.11.16.384594.
|
[112] |
WALLS A C, PARK Y J, TORTORICI M A, WALL A, MCGUIRE A T, VEESLER D. Structure, function, and antigenicity of the SARSCoV2 spike glycoprotein[J]. Cell, 2020, 181(2): 281-292.
|
[113] |
BOUWMAN K M, TOMRIS I, TURNER H L, van der WOUDE R, SHAMORKINA T M, BOSMAN G P, ROCKX B, HERFST S, SNIJDER J, HAAGMANS B L, WARD A B, BOONS G J, de VRIES R P. Multimerization and glycosylationdependent receptor binding of SARSCoV2 spike proteins[J]. PLoS Pathogens, 2021, doi: 10.1371/journal.ppat.1009282.
|
[114] |
YAN R, ZHANG Y, LI Y, XIA L, GUO Y, ZHOU Q. Structural basis for the recognition of SARSCoV2 by fulllength human ACE2[J]. Science, 2020, 367(6 485): 1444-1448.
|
[115] |
YANG Q, HUGHES T A, KELKAR A, YU X, CHENG K, PARK S J, HUANG W C, LOVELL J F, NEELAMEGHAM S. Inhibition of SARSCoV2 viral entry upon blocking N- and O-glycan elaboration[J]. eLife, 2020, 9: 1-44.
|
[116] |
ZHAO Y, ZHAO Z, WANG Y, ZHOU Y, MA Y, ZUO W. Singlecell RNA expression profiling of ACE2, the receptor of SARSCoV2[J]. American Journal of Respiratory and Critical Care Medicine, 2020, 202(5): 756-759.
|
[117] |
ZHANG H, KANG Z, GONG H, XU D, WANG J, LI Z, CUI X, XIAO J, MENG T, ZHOU W, LIU J, XU H. The digestive system is a potential route of 2019nCov infection: a bioinformatics analysis based on singlecell transcriptomes[J]. BioRxiv, 2020, doi: 10.1101/2020.01.30.927806.
|
[118] |
DONOGHUE M, HSIEH F, BARONAS E, GODBOUT K, GOSSELIN M, STAGLIANO N, DONOVAN M, WOOLF B, ROBISON K, JEYASEELAN R, BREITBART R E, ACTON S. A novel angiotensinconverting enzymerelated carboxypeptidase (ACE2) converts angiotensin I to angiotensin 19[J]. Circulation Research, 2000, 87(5): E1-E9.
|
[119] |
ZHANG H, WADA J, HIDA K, TSUCHIYAMA Y, HIRAGUSHI K, SHIKATA K, WANG H, LIN S, KANWAR Y S, MAKINO H. Collectrin, a collecting ductspecific transmembrane glycoprotein, is a novel homolog of ace2 and is developmentally regulated in embryonic kidneys[J]. Journal of Biological Chemistry, 2001, 276(20): 17132-17139.
|
[120] |
WANG K, GHEBLAWI M, OUDIT G Y. Angiotensin converting enzyme 2: a doubleedged sword[J]. Circulation, 2020, 142(5): 426-428.
|
[121] |
PATEL V B, ZHONG J C, GRANT M B, OUDIT G Y. Role of the ACE2/angiotensin 17 axis of the reninangiotensin system in heart failure[J]. Circulation Research, 2016, 118(8): 1313-1326.
|
[122] |
CLARKE N E, TURNER A J. Angiotensinconverting enzyme 2: the first decade[J]. International Journal of Hypertension, 2012: 307315.
|
[123] |
HASHIMOTO T, PERLOT T, REHMAN A, TRICHEREAU J, ISHIGURO H, PAOLINO M, SIGL V, HANADA T, HANADA R, LIPINSKI S, WILD B, CAMARGO S M R, SINGER D, RICHTER A, KUBA K, FUKAMIZU A, SCHREIBER S, CLEVERS H, VERREY F, ROSENSTIEL P, PENNINGER J M. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation[J]. Nature, 2012, 487(7 408): 477-481.
|
[124] |
TURNER A J, HISCOX J A, HOOPER N M. ACE2: from vasopeptidase to SARS virus receptor[J]. Trends in Pharmacological Sciences, 2004, 25(6): 291-294.
|
[125] |
KUHN J H, LI W, CHOE H, FARZAN M. Angiotensinconverting enzyme 2: a functional receptor for SARS coronavirus[J]. Cellular and Molecular Life Sciences, 2004, 61(21): 2738-2743.
|
[126] |
SHAJAHAN A, ARCHERHARTMANN S, SUPEKAR N T, GLEINICH A S, HEISS C, AZADI P. Comprehensive characterization of N- and O-glycosylation of SARSCoV2 human receptor angiotensin converting enzyme 2[J]. Glycobiology, 2021, 31(4): 410-424.
|
[127] |
MEHDIPOUR A R, HUMMER G. Dual nature of human ACE2 glycosylation in binding to SARSCoV2 spike[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, doi: 10.1101/2020.07.09.193680.
|
[128] |
GHEBLAWI M, WANG K, VIVEIROS A, NGUYEN Q, ZHONG J C, TURNER A J, RAIZADA M K, GRANT M B, OUDIT G Y. Angiotensinconverting enzyme 2: SARSCoV2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2[J]. Circulation Research, 2020, 126: 1456-1474.
|
[129] |
COHEN P. Protein phosphorylation and hormone action[J]. Proceedings of the Royal Society B: Biological Sciences, 1988, 234(1 275): 115-144.
|
[130] |
HUNTER T. Protein kinases and phosphatases: the Yin and Yang of protein phosphorylation and signaling[J]. Cell, 1995, 80(2): 225-236.
|
[131] |
ZOLNIEROWICZ S, BOLLEN M. Protein phosphorylation and protein phosphatases, De Panne, Belgium, September 1924, 1999[C]. EMBO Journal, 2000, 19(4): 483-488.
|
[132] |
LANDER E S, LINTON L M, BIRREN B. Initial sequencing and analysis of the human genome[J]. Nature, 2001, 409(6 822): 860-921.
|
[133] |
CRAIG VENTER J, ADAMS M D, MYERS E W. The sequence of the human genome[J]. Science, 2001, 291(5 507): 1 3041 351.
|
[134] |
ARNOTT D, GAWINOWICZ M A, GRANT R A, NEUBERT T A, PACKMAN L C, SPEICHER K D, STONE K, TURCK C W. ABRFPRG03: phosphorylation site determination[J]. Journal of Biomolecular Techniques, 2003, 14(3): 205-215.
|
[135] |
HUMPHREY S J, KARAYEL O, JAMES D E, MANN M. Highthroughput and highsensitivity phosphoproteomics with the EasyPhos platform[J]. Nature Protocols, 2018, 13(9): 1897-1916.
|
[136] |
SUGIYAMA N, MASUDA T, SHINODA K, NAKAMURA A, TOMITA M, ISHIHAMA Y. Phosphopeptide enrichment by aliphatic hydroxy acidmodified metal oxide chromatography for nano-LC-MS/MS in proteomics applications[J]. Molecular and Cellular Proteomics, 2007, 6(6): 1103-1109.
|
[137] |
THINGHOLM T E, JRGENSEN T J D, JENSEN O N, LARSEN M R. Highly selective enrichment of phosphorylated peptides using titanium dioxide[J]. Nature Protocols, 2006, 1(4): 1929-1935.
|
[138] |
ZHOU H, YE M, DONG J, CORRADINI E, CRISTOBAL A, HECK A J R, ZOU H, MOHAMMED S. Robust phosphoproteome enrichment using monodisperse microspherebased immobilized titanium (Ⅳ) ion affinity chromatography[J]. Nature Protocols, 2013, 8(3): 461-480.
|
[139] |
VILLN J, GYGI S P. The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry[J]. Nature Protocols, 2008, 3(10): 1638.
|
[140] |
BATTH T S, FRANCAVILLA C, OLSEN J V. Offline highpH reversedphase fractionation for indepth phosphoproteomics[J]. Journal of Proteome Research, 2014, 13(12): 6176-6186.
|
[141] |
MACEK B, MANN M, OLSEN J V. Global and sitespecific quantitative phosphoproteomics: principles and applications[J]. Annual Review of Pharmacology and Toxicology, 2009, 49: 199-221.
|
[142] |
ABELIN J G, TRANTHAM P D, PENNY S A, PATTERSON A M, WARD S T, HILDEBRAND W H, COBBOLD M, BAI D L, SHABANOWITZ J, HUNT D F. Complementary IMAC enrichment methods for HLAassociated phosphopeptide identification by mass spectrometry[J]. Nature Protocols, 2015, 10(9): 1308-1318.
|
[143] |
TSAI C F, HSU C C, HUNG J N, WANG Y T, CHOONG W K, ZENG M Y, LIN P Y, HONG R W, SUNG T Y, CHEN Y J. Sequential phosphoproteomic enrichment through complementary metaldirected immobilized metal ion affinity chromatography[J]. Analytical Chemistry, 2014, 86(1): 685-693.
|
[144] |
VILASI A, FIUME I, PACE P, ROSSI M, POCSFALVI G. Enrichment specificity of micro and nanosized titanium and zirconium dioxides particles in phosphopeptide mapping[J]. Journal of Mass Spectrometry, 2013, 48(11): 1188-1198.
|
[145] |
KANSHIN E, MICHNICK S W, THIBAULT P. Displacement of N/Qrich peptides on TiO2 beads enhances the depth and coverage of yeast phosphoproteome analyses[J]. Journal of Proteome Research, 2013, 12(6): 2905-2913.
|
[146] |
BERARD A, KROEKER A, MCQUEEN P, COOMBS K M. Methods and approaches to disease mechanisms using systems kinomics[J]. Synthetic and Systems Biotechnology, 2018, 3(1): 34-43.
|
[147] |
MICHALSKI A, DAMOC E, LANGE O, DENISOV E, NOLTING D, MLLER M, VINER R, SCHWARTZ J, REMES P, BELFORD M, DUNYACH J J, COX J, HORNING S, MANN M, MAKAROV A. Ultra high resolution linear ion trap orbitrap mass spectrometer (orbitrap elite) facilitates top down LC MS/MS and versatile peptide fragmentation modes[J]. Molecular and Cellular Proteomics, 2012, 11(3): O111.013698.
|
[148] |
MICHALSKI A, DAMOC E, HAUSCHILD J P, LANGE O, WIEGHAUS A, MAKAROV A, NAGARAJ N, COX J, MANN M, HORNING S. Mass spectrometrybased proteomics using Q exactive, a highperformance benchtop quadrupole orbitrap mass spectrometer[J]. Molecular and Cellular Proteomics, 2011, 10(9): M111.011015.
|
[149] |
SYKA J E P, MARTO J A, BAI D L, HORNING S, SENKO M W, SCHWARTZ J C, UEBERHEIDE B, GARCIA B, BUSBY S, MURATORE T, SHABANOWITZ J, HUNT D F. Novel linear quadrupole ion trap/FT mass spectrometer: performance characterization and use in the comparative analysis of histone H3 post-translational modifications[J]. Journal of Proteome Research, 2004, 3(3): 621-626.
|
[150] |
ZHANG Y, FONSLOW B R, SHAN B, BAEK M C, YATES J R. Protein analysis by shotgun/bottomup proteomics[J]. Chemical Reviews, 2013, 113(4): 2343-2394.
|
[151] |
SENKO M W, REMES P M, CANTERBURY J D, MATHUR R, SONG Q, ELIUK S M, MULLEN C, EARLEY L, HARDMAN M, BLETHROW J D, BUI H, SPECHT A, LANGE O, DENISOV E, MAKAROV A, HORNING S, ZABROUSKOV V. Novel parallelized quadrupole/linear ion trap/orbitrap tribrid mass spectrometer improving proteome coverage and peptide identification rates[J]. Analytical Chemistry, 2013, 85(24): 11710-11714.
|
[152] |
DAVIDSON A D, WILLIAMSON M K, LEWIS S, SHOEMARK D, CARROLL M W, HEESOM K J, ZAMBON M, ELLIS J, LEWIS P A, HISCOX J A, MATTHEWS D A. Characterisation of the transcriptome and proteome of SARS-CoV2 reveals a cell passage induced inframe deletion of the furinlike cleavage site from the spike glycoprotein[J]. Genome Medicine, 2020, 12(1): 1-15.
|
[153] |
FUNG T S, LIU D X. Posttranslational modifications of coronavirus proteins: Roles and function[J]. Future Virology, 2018, 13(6): 405-430.
|
[154] |
BALIBAN R C, DIMAGGIO P A, PLAZASMAYORCA M D, YOUNG N L, GARCIA B A, FLOUDAS C A. A novel approach for untargeted posttranslational modification identification using integer linear optimization and tandem mass spectrometry[J]. Molecular and Cellular Proteomics, 2010, 9(5): 764-779.
|
[155] |
COMPTON P D, KELLEHER N L, GUNAWARDENA J. Estimating the distribution of protein posttranslational modification states by mass spectrometry[J]. Journal of Proteome Research, 2018, 17(8): 2727-2734.
|
[156] |
SUN Z, REN K, ZHANG X, CHEN J, JIANG Z, JIANG J, JI F, OUYANG X, LI L. Mass spectrometry analysis of newly emerging coronavirus HCoV19 spike protein and human ace2 reveals camouflaging glycans and unique post-translational modifications[J]. Engineering, 2020, doi: 10.1016/j.eng.2020.07.014.
|
[157] |
SPRUNG R, CHEN Y, ZHANG K, CHENG D, ZHANG T, PENG J, ZHAO Y. Identification and validation of eukaryotic aspartate and glutamate methylation in proteins[J]. Journal of Proteome Research, 2008, 7(3): 1001-1006.
|
[158] |
LI J, GUO M, TIAN X, WANG X, YANG X, WU P, LIU C, XIAO Z, QU Y, YIN Y, WANG C, ZHANG Y, ZHU Z, LIU Z, PENG C, ZHU T, LIANG Q. Virushost interactome and proteomic survey reveal potential virulence factors influencing SARSCoV2 pathogenesis[J]. Med, 2021, 2(1): 99-112.
|
[159] |
BOCK J O, ORTEA I. Reanalysis of SARSCoV2infected host cell proteomics timecourse data by impact pathway analysis and network analysis: a potential link with inflammatory response[J]. Aging, 2020, 12(12): 11277-11286.
|
[160] |
GORDON D E, JANG G M, BOUHADDOU M. A SARSCoV2 protein interaction map reveals targets for drug repurposing[J]. Nature, 2020, 583(7 816): 459-468.
|
[161] |
SARDAR R, SATISH D, BIRLA S, GUPTA D. Integrative analyses of SARSCoV2 genomes from different geographical locations reveal unique features potentially consequential to hostvirus interaction, pathogenesis and clues for novel therapies[J]. Heliyon, 2020, 6(9): e04658.
|
[162] |
GUPTA R, CHARRON J, STENGER C L, PAINTER J, STEWARD H, COOK T W, FABER W, FRISCH A, LIND E, BAUSS J, LI X, SIRPILLA O, SOEHNLEN X, UNDERWOOD A, HINDS D, MORRIS M, LAMB N, CARCILLO J A, BUPP C, UHAL B D, RAJASEKARAN S, PROKOP J W. SARSCoV2 (COVID19) structural and evolutionary dynamicome: insights into functional evolution and human genomics[J]. Journal of Biological Chemistry, 2020, 295(33): 11742-11753.
|
[163] |
ZHU L, FUNG S Y, XIE G, WONG L Y R, JIN D Y, CAI Z. Identification of lysine acetylation sites on MERSCoV replicase pp1ab[J]. Molecular and Cellular Proteomics, 2020, 19(8): 1303-1309.
|
[164] |
MAHMUD I, GARRETT T J. Mass spectrometry techniques in emerging pathogens studies: COVID19 perspectives[J]. Journal of the American Society for Mass Spectrometry, 2020, 31(10): 2013-2024.
|
[165] |
JUNGREIS I, SEALFON R, KELLIS M. SARSCoV2 gene content and COVID19 mutation impact by comparing 44 Sarbecovirus genomes[J]. Nature Communications, 2021, 12(1): 1-20.
|
[166] |
RARDIN M J, NEWMAN J C, HELD J M, CUSACK M P, SORENSEN D J, LI B, SCHILLING B, MOONEY S D, KAHN C R, VERDIN E, GIBSON B W. Labelfree quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(16): 6 6016 606.
|
[167] |
BAERENFAENGER M, MEYER B. Intact human alphaacid glycoprotein analyzed by ESIqTOFMS: simultaneous determination of the glycan composition of multiple glycosylation sites[J]. Journal of Proteome Research, 2018, 17(11): 3693-3703.
|