基于酰胺化的化学标记技术在磷酸化多肽分析中的应用

邹伦妃, 张启伟, 肖琛, 熊淼, 郑琦

邹伦妃, 张启伟, 肖琛, 熊淼, 郑琦. 基于酰胺化的化学标记技术在磷酸化多肽分析中的应用[J]. 质谱学报, 2022, 43(4): 463-472. DOI: 10.7538/zpxb.2021.0202
引用本文: 邹伦妃, 张启伟, 肖琛, 熊淼, 郑琦. 基于酰胺化的化学标记技术在磷酸化多肽分析中的应用[J]. 质谱学报, 2022, 43(4): 463-472. DOI: 10.7538/zpxb.2021.0202
ZOU Lun-fei, ZHANG Qi-wei, XIAO Chen, XIONG Miao, ZHENG Qi. Chemical Labeling Method Based on Amidation for the Analysis of Phosphopeptides[J]. Journal of Chinese Mass Spectrometry Society, 2022, 43(4): 463-472. DOI: 10.7538/zpxb.2021.0202
Citation: ZOU Lun-fei, ZHANG Qi-wei, XIAO Chen, XIONG Miao, ZHENG Qi. Chemical Labeling Method Based on Amidation for the Analysis of Phosphopeptides[J]. Journal of Chinese Mass Spectrometry Society, 2022, 43(4): 463-472. DOI: 10.7538/zpxb.2021.0202
邹伦妃, 张启伟, 肖琛, 熊淼, 郑琦. 基于酰胺化的化学标记技术在磷酸化多肽分析中的应用[J]. 质谱学报, 2022, 43(4): 463-472. CSTR: 32365.14.zpxb.2021.0202
引用本文: 邹伦妃, 张启伟, 肖琛, 熊淼, 郑琦. 基于酰胺化的化学标记技术在磷酸化多肽分析中的应用[J]. 质谱学报, 2022, 43(4): 463-472. CSTR: 32365.14.zpxb.2021.0202
ZOU Lun-fei, ZHANG Qi-wei, XIAO Chen, XIONG Miao, ZHENG Qi. Chemical Labeling Method Based on Amidation for the Analysis of Phosphopeptides[J]. Journal of Chinese Mass Spectrometry Society, 2022, 43(4): 463-472. CSTR: 32365.14.zpxb.2021.0202
Citation: ZOU Lun-fei, ZHANG Qi-wei, XIAO Chen, XIONG Miao, ZHENG Qi. Chemical Labeling Method Based on Amidation for the Analysis of Phosphopeptides[J]. Journal of Chinese Mass Spectrometry Society, 2022, 43(4): 463-472. CSTR: 32365.14.zpxb.2021.0202

基于酰胺化的化学标记技术在磷酸化多肽分析中的应用

Chemical Labeling Method Based on Amidation for the Analysis of Phosphopeptides

  • 摘要: 蛋白质的翻译后修饰复杂多样,通过激酶与磷酸酶调控的磷酸化是最广泛、最重要的翻译后修饰之一。定量分析磷酸化蛋白质的动态变化,有利于阐明磷酸化修饰调控生命活动的机理,了解其在实现生物功能过程中的作用。以质谱为核心的分析方法是当前蛋白质翻译后修饰研究中最常用的定量技术,主要包括无标记定量、内标绝对定量、化学标记等。本文将一种用于蛋白质糖基化分析的标记方法应用于磷酸化多肽的研究。使用二甲胺标记蛋白质的所有酶解肽段,被酰胺化的羧基可提高TiO2对磷酸化多肽的富集特异性以及液相色谱-质谱(LC-MS)检测的灵敏度。稳定同位素标记实验表明,该方法适用于高通量磷酸化多肽的相对定量分析。基于二甲胺衍生的化学标记法在磷酸化多肽的质谱分析中具有优势,有望成为生物组织中磷酸化蛋白质研究的有力工具。
    Abstract: Post-translational modification of proteins is complex and diverse, with the phosphorylation regulated by kinases and phosphatases being one of the most widespread and important modifications. Dynamic change of quantitative analysis of phosphorylated proteins is helpful to clarify the mechanism of phosphorylation regulating life activities and understand its role in achieving biological functions. Mass spectrometry is the most commonly used strategy for the quantitative analysis of post-translational modification, involving label-free quantification, internal standard absolute quantification, and chemical labeling, etc. In this paper, a chemical labeling approach which has been used for protein glycosylation profiling was applied to the relative quantitative analysis of phosphopeptides. Using the method, carboxyl groups were located on the side chain of aspartic acid and glutamic acid residues, and the C-terminus of peptide were allowed to react with dimethylamine (d0-DMA)/deuterated dimethylamine (d6-DMA). As a result, the carboxyl groups were neutralized, and all enzymatic peptides were labeled with light/heavy tags. After the samples with different tags were mixed, the phosphopeptides were enriched using TiO2 magnetic particles and then analyzed qualitatively and relatively quantitatively by liquid chromatography-mass spectrometry (LC-MS). Amidation could shield the negatively charged carboxyl groups of non-phosphorylated and phosphorylated peptides, so that the peptides with phosphate groups mainly exhibited negative charge property, thus improving the enrichment specificity of TiO2 for phosphopeptides as well as its detection sensitivity in LC-MS analysis. Using 0.2 mg casein as a standard, 8 phosphopeptides were detected in the derivatized samples. A high abundance of b and y ions indicated that the amidation by dimethylamine was highly specific and usually occurs only at the carboxyl group without a significant effect on the phosphate group of peptides. A series of molar ratios (5∶1, 2∶1, 1∶1, 1∶2, 1∶5) of samples were derivatized using d0-DMA and d6-DMA, respectively. The results showed that the error was less than 20% for each ratio, indicating that the method possessed good relative quantitative range and accuracy. However, too many derivative sites in the peptides could result in incomplete derivatization, and the C-terminal lysine residues might self-condense to form lactam during the derivatization process. By selecting some individualized proteases during protein digestion, such as GluC, the number of derivative sites might be in an appropriate range and lysine residue could be avoided at the terminal of peptides, which should be useful for improving identification efficiency and quantitative accuracy of phosphopeptides. In summary, the chemical labeling method based on dimethylamine derivatization presents advantages for high-throughput relative quantitative analysis of phosphopeptides and it is expected to be a powerful tool for protein phosphorylation profiling in biological tissues.
  •   3086

  • [1] ZHANG Z M, YE J Y, LONG H F, HONG Y, LU P L. Global proteomic and phosphoproteomic analysis of the premature maize anther[J]. Journal of Biotechnology, 2016, 32(7): 937-955.
    [2] SUN Z M, CHEN Q, LI M H, MA W N, ZHAO X Y, HUANG Z. Chronic phosphoproteomic in temporal lobe epilepsy mouse models induced by kainic acid[J]. Journal of Peking University, 2019, 51(2): 197-205.
    [3] 蔡冲,吕均良,陈昆松. 蛋白激酶的研究(综述)[J]. 亚热带植物科学,2002(1):63-67.
    CAI Chong, LV Junliang, CHEN Kunsong. A review of study in protein kinase[J]. Subtropical Plant Science, 2002(1): 63-67(in Chinese).
    [4] 张宝会,王晨桐,郭淼,肖华. 基于亲和色谱的肺癌细胞磷酸化蛋白质组研究及其应用[J]. 色谱,2021,39(1):77-86.
    ZHANG Baohui, WANG Chentong, GUO Miao, XIAO Hua. Affinity chromatography based phosphoproteome research on lung cancer cells and its application[J]. Chinese Journal of Chromatography, 2021, 39(1): 77-86(in Chinese).
    [5] LUO F T, JIANG N, WANG H, SHAO X F, CHEN R B, BAI R X, WANG Y. Phosphoproteomic analysis of peripheral blood mononuclear cells of ankylosing spondylitis patients[J]. Journal of Cellular and Molecular Immunology, 2020, 36(5): 444-450.
    [6] HEAZLEWOOD J L, DUREK P, HUMMEL J, SELBIG J, WECKWERTH W, WALTHER D, SCHULZE W X. PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor[J]. Nucleic Acids Research, 2008, 36: D1015-D1021.
    [7] NAKAGAMI H, SUGIYAMA N, MOCHIDA K, DAUDI A, YOSHIDA Y, TOYODA T, TOMITA M, ISHIHAMA Y, SHIRASU K. Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants[J]. Plant Physiology, 2010, 153(3): 1161-1174.
    [8] 甄艳,李春映,施季森. 磷酸化蛋白质组定量研究策略[J]. 分子植物育种,2014,12(3):577-583.
    ZHEN Yan, LI Chunying, SHI Jisen. Progress in quantitative analysis strategies of phosphoproteomic[J]. Molecular Plant Breeding, 2014, 12(3): 577-583(in Chinese).
    [9] JI C J, LI L. Quantitative proteome analysis using differential stable isotopic labeling and microbore LC-MALDI MS and MS/MS[J]. Journal of Proteome Research, 2005, 4(3): 734-742.
    [10] AMORESANO A, MARINO G, CIRULLI C, QUEMENEUR E. Mapping phosphorylation sites: a new strategy based on the use of isotopically labelled DTT and mass spectrometry[J]. European Journal of Mass Spectrometry, 2004, 10(1): 401-412.
    [11] GOSHE M B, CONRADS T P, PANISKO E A, ANGELL N H, VEENSTRA T D, SMITH R D. Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analyses[J]. Analytical Chemistry, 2001, 73(11): 2578-2586.
    [12] JI C J, GUO N, LI L. Differential dimethyl labeling of N-termini of peptides after guanidination for proteome analysis[J]. Journal of Proteome Research, 2005, 4(6): 2099-2108.
    [13] JIN M, BATEUP H, PADOVAN J C, GREENGARD P, NAIRN A C, CHAIT B T. Quantitative analysis of protein phosphorylation in mouse brain by hypothesis-driven multistage mass spectrometry[J]. Analytical Chemistry, 2005, 77(24): 7845-7851.
    [14] BARRIOS-LLERENAl M E, LE B T. Quantitative phosphoproteomic using titanium dioxide micro-columns and label-free quantitation[J]. Methods in Molecular Biology, 2019, 1977: 35-42.
    [15] ZHAI G J, WU X Y, LUO Q, WU K, ZHAO Y, LIU J A, XIONG S X, FENG Y Q, YANG L P, WANG F Y. Evaluation of serum phosphopeptides as potential cancer biomarkers by mass spectrometric absolute quantification[J]. Talanta, 2014, 125: 411-417.
    [16] SMITH J, FIGEYS D. Recent developments in mass spectrometry-based quantitative phosphoproteomics[J]. Biochemistry and Cell Biology, 2008, 86(2): 137-148.
    [17] LI Z, ADAMS R M, CHOUREY K, HURST G B, HETTICH R L, PAN C L. Systematic comparison of label-free, metabolic labeling, and isobaric chemical labeling for quantitative proteomics on LTQ Orbitrap velos[J]. Journal of Proteome Research, 2012, 11(3): 1582-1590.
    [18] SHIIO Y, AEBERSOLD R. Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry[J]. Nature Protocols, 2006, 1(1): 139-145.
    [19] 朱金蕾,张锴,何锡文,张玉奎. 基于质谱技术蛋白质定量方法的研究进展[J]. 分析化学,2010,38(3):434-441.
    ZHU Jinlei, ZHANG Kai, HE Xiwen, ZHANG Yukui. New development of quantitative mass spectrometrybased proteomics[J]. Analytical Chemistry, 2010, 38(3): 434-441(in Chinese).
    [20] 王子健,杨静波,李光谱,孙宁宁,孙万春,彭其胜,刘宁. 低浓度甲醛对多肽和蛋白化学修饰的质谱研究[J]. 分析化学,2016,44(8):1193-1199.
    WANG Zijian, YANG Jingbo, LI Guangpu, SUN Ningning, SUN Wanchun, PENG Qisheng, LIU Ning. Chemical modifications of peptides and proteins with low concentration formaldehyde studied by mass spectrometry[J]. Analytical Chemistry, 2016, 44(8): 1193-1199(in Chinese).
    [21] 马首智,孙玉琳,赵晓航,徐平. 高精度相对和绝对定量的等量异位标签在定量蛋白质组学研究中的新进展[J]. 生物工程学报,2014,30(7):1073-1082.
    MA Shouzhi, SUN Yulin, ZHAO Xiaohang, XU Ping. Recent advance in high accuracy iTRAQ for quantitative proteomics[J]. Chinese Journal of Biotechnology, 2014, 30(7): 1073-1082(in Chinese).
    [22] KOSAKO H, NAGANO K. Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways[J]. Expert Review of Proteomics, 2011, 8(1): 81-94.
    [23] ZHANG Q W, FENG X J, LI H H, LIU B F, LIN Y W, LIU X. Methylamidation for isomeric profiling of sialylated glycans by nanoLC-MS[J]. Analytical Chemistry, 2014, 86(15): 7913-7919.
    [24] LIU X, QIU H Y, LEE R K, CHEN W X, LI J J. Methylamidation for sialoglycomics by MALDI-MS: a facile derivatization strategy for both α2,3- and α2,6-linked sialic acids[J]. Analytical Chemistry, 2010, 82(19): 8300-8306.
    [25] 衣泰龙,田苗苗,杨晓明,徐平. 磷酸化蛋白质组学的新进展及其在肝脏生理和病理机制中的应用[J]. 生物工程学报,2014,30(7):1004-1017.
    YI Tailong, TIAN Miaomiao, YANG Xiaoming, XU Ping. Progress and application of phosphoproteomics in the proteomics of liver pathological and physiological state[J]. Chinese Journal of Biotechnology, 2014, 30(7): 1004-1017(in Chinese).
    [26] 林威. 二氧化钛富集磷酸肽方法的优化及在小鼠肝脏磷酸化蛋白质组学研究中的应用[D]. 北京:北京工业大学,2012.
    [27] 程功,王志刚,刘彦琳,张吉林,孙德慧,倪嘉缵. 基于纳米结构材料的磷酸化蛋白/多肽富集和分析[J]. 化学进展,2013,25(4):620-632.
    CHENG Gong, WANG Zhigang, LIU Yanlin, ZHANG Jilin, SUN Dehui, NI Jiazuan. Phosphoprotein/phosphopeptide enrichment and analysis based on nanostructured materials[J]. Progress in Chemistry, 2013, 25(4): 620-632(in Chinese).
  • 期刊类型引用(1)

    1. 邹伦妃,肖琛,熊淼,张启伟,郑琦. 碰撞诱导解离下二甲胺衍生多肽的碎裂特征研究. 质谱学报. 2023(04): 486-495 . 本站查看

    其他类型引用(1)

图(1)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  0
  • PDF下载量:  221
  • 被引次数: 2
出版历程
  • 刊出日期:  2022-07-19

目录

    /

    返回文章
    返回