基于离子淌度质谱技术的离子光谱研究进展

王娜, 粟雯, 张谛, 江游, 方向, 岳磊

王娜, 粟雯, 张谛, 江游, 方向, 岳磊. 基于离子淌度质谱技术的离子光谱研究进展[J]. 质谱学报, 2022, 43(5): 635-642. DOI: 10.7538/zpxb.2022.0155
引用本文: 王娜, 粟雯, 张谛, 江游, 方向, 岳磊. 基于离子淌度质谱技术的离子光谱研究进展[J]. 质谱学报, 2022, 43(5): 635-642. DOI: 10.7538/zpxb.2022.0155
WANG Na, SU Wen, ZHANG Di, JIANG You, FANG Xiang, YUE Lei. Perspective on Developments in Ion Mobility Spectrometry-Mass Spectrometry Combined with Ion Spectroscopy[J]. Journal of Chinese Mass Spectrometry Society, 2022, 43(5): 635-642. DOI: 10.7538/zpxb.2022.0155
Citation: WANG Na, SU Wen, ZHANG Di, JIANG You, FANG Xiang, YUE Lei. Perspective on Developments in Ion Mobility Spectrometry-Mass Spectrometry Combined with Ion Spectroscopy[J]. Journal of Chinese Mass Spectrometry Society, 2022, 43(5): 635-642. DOI: 10.7538/zpxb.2022.0155
王娜, 粟雯, 张谛, 江游, 方向, 岳磊. 基于离子淌度质谱技术的离子光谱研究进展[J]. 质谱学报, 2022, 43(5): 635-642. CSTR: 32365.14.zpxb.2022.0155
引用本文: 王娜, 粟雯, 张谛, 江游, 方向, 岳磊. 基于离子淌度质谱技术的离子光谱研究进展[J]. 质谱学报, 2022, 43(5): 635-642. CSTR: 32365.14.zpxb.2022.0155
WANG Na, SU Wen, ZHANG Di, JIANG You, FANG Xiang, YUE Lei. Perspective on Developments in Ion Mobility Spectrometry-Mass Spectrometry Combined with Ion Spectroscopy[J]. Journal of Chinese Mass Spectrometry Society, 2022, 43(5): 635-642. CSTR: 32365.14.zpxb.2022.0155
Citation: WANG Na, SU Wen, ZHANG Di, JIANG You, FANG Xiang, YUE Lei. Perspective on Developments in Ion Mobility Spectrometry-Mass Spectrometry Combined with Ion Spectroscopy[J]. Journal of Chinese Mass Spectrometry Society, 2022, 43(5): 635-642. CSTR: 32365.14.zpxb.2022.0155

基于离子淌度质谱技术的离子光谱研究进展

Perspective on Developments in Ion Mobility Spectrometry-Mass Spectrometry Combined with Ion Spectroscopy

  • 摘要: 离子光谱结合了质谱的高灵敏度和光谱的分子结构特异性的优势,可对蛋白质、多肽、糖类、寡核苷酸等复杂体系进行结构表征和鉴定。但当存在同分异构体时,离子光谱难以从叠加的谱图中得到单个异构体的光谱信息。离子淌度质谱技术可通过区分待测离子质荷比和分子空间尺寸差异来实现异构体的分离。离子淌度可以对异构体分离后分别引入到后续的光谱和质谱分析中,减少了由异构体引起的光谱叠加问题,光谱可以进一步验证离子淌度的分离效果,因此质谱、光谱、离子淌度谱的有机结合在得到异构体精确光谱的同时,也为离子淌度质谱分析带来了新的维度和深度。本文概述了近20年来基于各类离子淌度质谱技术的光谱仪器发展和应用情况,总结目前存在的问题,并展望多维度结构质谱的新需求。
    Abstract: Combined with mass spectrometry, ion spectroscopy can obtain a spectrum of the target ion by measuring its intensity change, which is induced by laser strength and wavelength. It integrates the high sensitivity of mass spectrometry and the structural specificity of spectroscopy, and thus proves to be very useful in structure characterization of complex biomolecules, such as proteins, peptides, glycans, oligonucleotides, etc. However, the electronic or vibrational spectra becomes too complex to be resolved when analyzing isomeric ions. Ion mobility spectrometry (IMS) allows ionized molecules to be separated on the basis of mobilities in the gas phase, and its coupling with electrospray and MALDI ion sources opens up possibilities for structural studies of a wide range of biomolecules in gasphase. Ion mobility spectrometry coupled with mass spectrometry has seen spectacular growth for the last two decades. The introduction of ion mobility to ion spectroscopy has been of growing attention in recent years. While IMS can be used as an isomer filter to reduce spectral congestion of ions, highly resolved ion spectra facilitates the identification of the isomer peaks separated by IMS. Taken together, spectra and collision cross section (CCS) measurements on the same system prove to be rather useful for structural analysis and provide clearer spectroscopic fingerprint to isomers. Therefore, this paper briefly summarized advances in ion spectroscopy research based on ion mobility-mass spectrometry technology, introduced representative researches, and prospected possible development in multi-dimensional structural mass spectrometry.
  •   3100

  • [1] GLISH G L, VACHET R W. The basics of mass spectrometry in the twenty-first century[J]. Nat Rev Drug Discovery, 2003, 2(2): 140-150.
    [2] DOMON B, AEBERSOLD R. Mass spectrometry and protein analysis[J]. Science, 2006, 312 (5 771): 212-217.
    [3] WU C, DILL A L, EBERLIN L S, COOKS R G, IFA D R. Mass spectrometry imaging under ambient conditions[J]. Mass Spectrom Rev, 2013, 32(3): 218-243.
    [4] HECK A J. Native mass spectrometry: a bridge between interactomics and structural biology[J]. Nat Meth, 2008, 5(11): 927-933.
    [5] CHACE D H. Mass spectrometry in the clinical laboratory[J]. Chem Rev, 2001, 101(2): 445-478.
    [6] BIEMANN K. Contributions of mass spectrometry to peptide and protein structure[J]. Biomed Environ Mass Spectrom, 1988, 16(1/2): 99-111.
    [7] DELL A, MORRIS H R. Glycoprotein structure determination by mass spectrometry[J]. Science, 2001, 291(5 512): 2351-2356.
    [8] KIND T, FIEHN O. Advances in structure elucidation of small molecules using mass spectrometry[J]. Bioanal Rev, 2010, 2(1): 23-60.
    [9] LEITNER A, FAINI M, STENGEL F, AEBERSOLD R. Crosslinking and mass spectrometry: an integrated technology to understand the structure and function of molecular machines[J]. Trends Biochem Sci, 2016, 41(1): 20-32.
    [10] ARAI S, SUGITA K, MA P, ISHIKAWA Y, KAETSU H, ISOMURA S. Two-stage IRMPD process for practical 13C enrichment. CHClF2/Br2 mixtures[J]. Chem Phys Lett, 1988, 151(6): 516-519.
    [11] CROWE M C, BRODBELT J S. Infrared multiphoton dissociation (IRMPD) and collisionally activated dissociationof peptides in a quadrupole ion trapwith selective IRMPD of phosphopeptides[J]. J Am Soc Mass Spectrom, 2004, 15(11): 1581-1592.
    [12] INOKUCHI Y, BOYARKIN O V, KUSAKA R, HAINO T, EBATA T, RIZZO T R. UV and IR spectroscopic studies of cold alkali metal ion-crown ether complexes in the gas phase[J]. J Am Chem Soc, 2011, 133(31): 12256-12263.
    [13] REILLY J P. Ultraviolet photofragmentation of biomolecular ions[J]. Mass Spectrom Rev, 2009, 28(3): 425-447.
    [14] SVENDSEN A, LORENZ U J, BOYARKIN O V, RIZZO T R. A new tandem mass spectrometer for photofragment spectroscopy of cold, gas-phase molecular ions[J]. Rev Sci Instrum, 2010, 81(7): 073 107.
    [15] WOLK A B, LEAVITT C M, GARAND E, JOHNSON M A. Cryogenic ion chemistry and spectroscopy[J]. Acc Chem Res, 2014, 47(1): 202-210.
    [16] ROITHOVÁ J, GRAY A, ANDRIS E, JASIK J, GERLICH D. Helium tagging infrared photodissociation spectroscopy of reactive ions[J]. Acc Chem Res, 2016, 49(2): 223-230.
    [17] STANNARD P R, GELBART W M. Intramolecular vibrational energy redistribution[J]. J Phy Chem, 1981, 85(24): 3592-3599.
    [18] PLÜTZER C, NIR E, de VRIES M, KLEINERMANNS K. IR-UV double-resonance spectroscopy of the nucleobase adenine[J]. Phys Chem Chem Phys, 2001, 3(24): 5466-5469.
    [19] LEAVITT C M, WOLK A B, FOURNIER J A, KAMRATH M Z, GARAND E, van STIPDONK M J, JOHNSON M A. Isomer-specific IR-IR double resonance spectroscopy of D2-tagged protonated dipeptides prepared in a cryogenic ion trap[J]. J Phy Chem Lett, 2012, 3(9): 1099-1105.
    [20] EICEMAN G A, KARPAS Z. Ion mobility spectrometry[M]. CRC Press, 2005.
    [21] KANU A B, DWIVEDI P, TAM M, MATZ L, HILL Jr H H. Ion mobility-mass spectrometry[J]. J Mass Spectrom, 2008, 43(1): 1-22.
    [22] EICEMAN G A. Advances in ion mobility spectrometry: 1980-1990[J]. Crit Rev Anal Chem, 1991, 22 (1/2): 471-490.
    [23] DODDS J N, BAKER E S. Ion mobility spectrometry: fundamental concepts, instrumentation, applications, and the road ahead[J]. J Am Soc Mass Spectrom, 2019, 30(11): 2185-2195.
    [24] GABELICA V, SHVARTSBURG A A, AFONSO C, BARRAN P, BENESCH J L, BLEIHOLDER C, BOWERS M T, BILBAO A, BUSH M F, CAMPBELL J L. Recommendations for reporting ion mobility Mass Spectrometry measurements[J]. Mass Spectrom Rev, 2019, 38(3): 291-320.
    [25] WU Q, WANG J Y, HAN D Q, YAO Z P. Recent advances in differentiation of isomers by ion mobility mass spectrometry[J]. TrAC Trends in Analytical Chemistry, 2020, 124: 115 801.
    [26] LAPTHORN C, PULLEN F, CHOWDHRY B Z. Ion mobility spectrometry-mass spectrometry (IMSMS) of small molecules: separating and assigning structures to ions[J]. Mass Spectrom Rev, 2013, 32(1): 43-71.
    [27] COLLINS D, LEE M. Developments in ion mobility spectrometry-mass spectrometry[J]. Anal Bioanal Chem, 2002, 372(1): 66-73.
    [28] FROMHERZ R, GANTEFÖR G, SHVARTSBURG A A. Isomer-resolved ion spectroscopy[J]. Phys Rev Lett, 2002, 89(8): 083 001.
    [29] VONDERACH M, EHRLER O T, WEIS P, KAPPES M M. Combining ion mobility spectrometry, mass spectrometry, and photoelectron spectroscopy in a high-transmission instrument[J]. Anal Chem, 2011, 83(3): 1108-1115.
    [30] SHAFFER S A, PRIOR D C, ANDERSON G A, UDSETH H R, SMITH R D. An ion funnel interface for improved ion focusing and sensitivity using electrospray ionization mass spectrometry[J]. Anal Chem, 1998, 70(19): 4111-4119.
    [31] PAPADOPOULOS G, SVENDSEN A, BOYARKIN O V, RIZZO T R. Spectroscopy of mobility-selected biomolecular ions[J]. Faraday Discuss, 2011, 150: 243-255.
    [32] PAPADOPOULOS G, SVENDSEN A, BOYARKIN O V, RIZZO T R. Conformational distribution of bradykinin [bk+2H]2+ revealed by cold ion spectroscopy coupled with FAIMS[J]. J Am Soc Mass Spectrom, 2012, 23(7): 1173-1181.
    [33] FRANKEVICH V, MARTINEZ-LOZANO SINUES P, BARYLYUK K, ZENOBI R. Ion mobility spectrometry coupled to laser-induced fluorescence[J]. Anal Chem, 2013, 85(1): 39-43.
    [34] ZIMMER M. Green fluorescent protein (GFP): applications, structure, and related photophysical behavior[J]. Chem Rev, 2002, 102(3): 759-782.
    [35] FRANKEVICH V E, BARYLYUK K V, MARTINEZ-LOZANO SINUES P, ZENOBI R. Ion mobility spectrometry coupled to laser-induced fluorescence for probing the electronic structure and conformation of gas-phase ions[J]. J Anal Chem, 2014, 69(13): 1215-1219.
    [36] WARNKE S, SEO J, BOSCHMANS J, SOBOTT F, SCRIVENS J H, BLEIHOLDER C, BOWERS M T, GEWINNER S, SCHÖLLKOPF W, PAGEL K. Protomers of benzocaine: solvent and permittivity dependence[J]. J Am Chem Soc, 2015, 137(12): 4236-4242.
    [37] TIAN Z, KASS S R. Gas-phase versus liquid-phase structures by electrospray ionization mass spectrometry[J]. Angew Chem Int Ed, 2009, 121(7): 1347-1349.
    [38] CHANG T M, PRELL J S, WARRICK E R, WILLIAMS E R. Where’s the charge? Protonation sites in gaseous ions change with hydration[J]. J Am Chem Soc, 2012, 134(38): 15805-15813.
    [39] CHAI Y, HU N, PAN Y. Kinetic and thermodynamic control of protonation in atmospheric pressure chemical ionization[J]. J Am Soc Mass Spectrom, 2013, 24(7): 1097-1101.
    [40] FÉRAUD G, ESTEVES-LOPEZ N, DEDONDER-LARDEUX C, JOUVET C. UV spectroscopy of cold ions as a probe of the protonation site[J]. Phys Chem Chem Phys, 2015, 17(39): 25755-25760.
    [41] DALY S, MacALEESE L, DUGOURD P, CHIROT F. Combining structural probes in the gas phase-ion mobility-resolved actionFRET[J]. J Am Soc Mass Spectrom, 2017, 29(1): 133-139.
    [42] KHANAL N, MASELLIS C, KAMRATH M Z, CLEMMER D E, RIZZO T R. Glycosaminoglycan analysis by cryogenic messenger-tagging IR spectroscopy combined with IMS-MS[J]. Anal Chem, 2017, 89(14): 7601-7606.
    [43] KAMRATH M Z, RIZZO T R. Combining ion mobility and cryogenic spectroscopy for structural and analytical studies of biomolecular ions[J]. Acc Chem Res, 2018, 51(6): 1487-1495.
    [44] KHANAL N, MASELLIS C, KAMRATH M Z, CLEMMER D E, RIZZO T R. Cryogenic IR spectroscopy combined with ion mobility spectrometry for the analysis of human milk oligosaccharides[J]. Analyst, 2018, 143(8): 1846-1852.
    [45] WARNKE S, FALEH A B, PELLEGRINELLI R P, YALOVENKO N, RIZZO T R. Combining ultra-high resolution ion mobility spectrometry with cryogenic IR spectroscopy for the study of biomolecular ions[J]. Faraday Discuss, 2019, 217: 114-125.
    [46] BEN FALEH A, WARNKE S, RIZZO T R. Combining ultrahigh-resolution ion-mobility spectrometry with cryogenic infrared spectroscopy for the analysis of glycan mixtures[J]. Anal Chem, 2019, 91(7): 4876-4882.
    [47] TOLMACHEV A V, WEBB I K, IBRAHIM Y M, GARIMELLA S V, ZHANG X, ANDERSON G A, SMITH R D. Characterization of ion dynamics in structures for lossless ion manipulations[J]. Anal Chem, 2014, 86(18): 9162-9168.
    [48] ZHANG X, GARIMELLA S V, PROST S A, WEBB I K, CHEN T C, TANG K, TOLMACHEV A V, NORHEIM R V, BAKER E S, ANDERSON G A. Ion trapping, storage, and ejection in structures for lossless ion manipulations[J]. Anal Chem, 2015, 87(12): 6010-6016.
    [49] YUE L, PELLEGRINELLI R, CARRASCOSA E, WARNKE S, FALEH A, RIZZO T. A new ion mobility tandem mass spectrometer for isomer-specific fragmentation and cryogenic IR spectroscopy of glycans[J]. ASMS, 2020, doi: 10.13140/RG.2.2.21237.81129.
    [50] PELLEGRINELLI R P, YUE L, CARRASCOSA E, WARNKE S, BEN FALEH A, RIZZO T R. How general is anomeric retention during collision-induced dissociation of glycans?[J]. J Am Chem Soc, 2020, 142(13): 5948-5951.
    [51] WARNKE S, BEN FALEH A, RIZZO T R. Toward high-throughput cryogenic IR fingerprinting of mobility-separated glycan isomers[J]. ACS Meas Sci Au, 2021, 1(3): 157-164.
    [52] VOSS J M, KREGEL S J, FISCHER K C, GARAND E. IR-IR conformation specific spectroscopy of Na+ (Glucose) adducts[J]. J Am Soc Mass Spectrom, 2017, 29(1): 42-50.
  • 期刊类型引用(0)

    其他类型引用(1)

图(1)
计量
  • 文章访问数:  333
  • HTML全文浏览量:  3
  • PDF下载量:  238
  • 被引次数: 1
出版历程
  • 刊出日期:  2022-09-19

目录

    /

    返回文章
    返回