[1] |
GLISH G L, VACHET R W. The basics of mass spectrometry in the twenty-first century[J]. Nat Rev Drug Discovery, 2003, 2(2): 140-150.
|
[2] |
DOMON B, AEBERSOLD R. Mass spectrometry and protein analysis[J]. Science, 2006, 312 (5 771): 212-217.
|
[3] |
WU C, DILL A L, EBERLIN L S, COOKS R G, IFA D R. Mass spectrometry imaging under ambient conditions[J]. Mass Spectrom Rev, 2013, 32(3): 218-243.
|
[4] |
HECK A J. Native mass spectrometry: a bridge between interactomics and structural biology[J]. Nat Meth, 2008, 5(11): 927-933.
|
[5] |
CHACE D H. Mass spectrometry in the clinical laboratory[J]. Chem Rev, 2001, 101(2): 445-478.
|
[6] |
BIEMANN K. Contributions of mass spectrometry to peptide and protein structure[J]. Biomed Environ Mass Spectrom, 1988, 16(1/2): 99-111.
|
[7] |
DELL A, MORRIS H R. Glycoprotein structure determination by mass spectrometry[J]. Science, 2001, 291(5 512): 2351-2356.
|
[8] |
KIND T, FIEHN O. Advances in structure elucidation of small molecules using mass spectrometry[J]. Bioanal Rev, 2010, 2(1): 23-60.
|
[9] |
LEITNER A, FAINI M, STENGEL F, AEBERSOLD R. Crosslinking and mass spectrometry: an integrated technology to understand the structure and function of molecular machines[J]. Trends Biochem Sci, 2016, 41(1): 20-32.
|
[10] |
ARAI S, SUGITA K, MA P, ISHIKAWA Y, KAETSU H, ISOMURA S. Two-stage IRMPD process for practical 13C enrichment. CHClF2/Br2 mixtures[J]. Chem Phys Lett, 1988, 151(6): 516-519.
|
[11] |
CROWE M C, BRODBELT J S. Infrared multiphoton dissociation (IRMPD) and collisionally activated dissociationof peptides in a quadrupole ion trapwith selective IRMPD of phosphopeptides[J]. J Am Soc Mass Spectrom, 2004, 15(11): 1581-1592.
|
[12] |
INOKUCHI Y, BOYARKIN O V, KUSAKA R, HAINO T, EBATA T, RIZZO T R. UV and IR spectroscopic studies of cold alkali metal ion-crown ether complexes in the gas phase[J]. J Am Chem Soc, 2011, 133(31): 12256-12263.
|
[13] |
REILLY J P. Ultraviolet photofragmentation of biomolecular ions[J]. Mass Spectrom Rev, 2009, 28(3): 425-447.
|
[14] |
SVENDSEN A, LORENZ U J, BOYARKIN O V, RIZZO T R. A new tandem mass spectrometer for photofragment spectroscopy of cold, gas-phase molecular ions[J]. Rev Sci Instrum, 2010, 81(7): 073 107.
|
[15] |
WOLK A B, LEAVITT C M, GARAND E, JOHNSON M A. Cryogenic ion chemistry and spectroscopy[J]. Acc Chem Res, 2014, 47(1): 202-210.
|
[16] |
ROITHOVÁ J, GRAY A, ANDRIS E, JASIK J, GERLICH D. Helium tagging infrared photodissociation spectroscopy of reactive ions[J]. Acc Chem Res, 2016, 49(2): 223-230.
|
[17] |
STANNARD P R, GELBART W M. Intramolecular vibrational energy redistribution[J]. J Phy Chem, 1981, 85(24): 3592-3599.
|
[18] |
PLÜTZER C, NIR E, de VRIES M, KLEINERMANNS K. IR-UV double-resonance spectroscopy of the nucleobase adenine[J]. Phys Chem Chem Phys, 2001, 3(24): 5466-5469.
|
[19] |
LEAVITT C M, WOLK A B, FOURNIER J A, KAMRATH M Z, GARAND E, van STIPDONK M J, JOHNSON M A. Isomer-specific IR-IR double resonance spectroscopy of D2-tagged protonated dipeptides prepared in a cryogenic ion trap[J]. J Phy Chem Lett, 2012, 3(9): 1099-1105.
|
[20] |
EICEMAN G A, KARPAS Z. Ion mobility spectrometry[M]. CRC Press, 2005.
|
[21] |
KANU A B, DWIVEDI P, TAM M, MATZ L, HILL Jr H H. Ion mobility-mass spectrometry[J]. J Mass Spectrom, 2008, 43(1): 1-22.
|
[22] |
EICEMAN G A. Advances in ion mobility spectrometry: 1980-1990[J]. Crit Rev Anal Chem, 1991, 22 (1/2): 471-490.
|
[23] |
DODDS J N, BAKER E S. Ion mobility spectrometry: fundamental concepts, instrumentation, applications, and the road ahead[J]. J Am Soc Mass Spectrom, 2019, 30(11): 2185-2195.
|
[24] |
GABELICA V, SHVARTSBURG A A, AFONSO C, BARRAN P, BENESCH J L, BLEIHOLDER C, BOWERS M T, BILBAO A, BUSH M F, CAMPBELL J L. Recommendations for reporting ion mobility Mass Spectrometry measurements[J]. Mass Spectrom Rev, 2019, 38(3): 291-320.
|
[25] |
WU Q, WANG J Y, HAN D Q, YAO Z P. Recent advances in differentiation of isomers by ion mobility mass spectrometry[J]. TrAC Trends in Analytical Chemistry, 2020, 124: 115 801.
|
[26] |
LAPTHORN C, PULLEN F, CHOWDHRY B Z. Ion mobility spectrometry-mass spectrometry (IMSMS) of small molecules: separating and assigning structures to ions[J]. Mass Spectrom Rev, 2013, 32(1): 43-71.
|
[27] |
COLLINS D, LEE M. Developments in ion mobility spectrometry-mass spectrometry[J]. Anal Bioanal Chem, 2002, 372(1): 66-73.
|
[28] |
FROMHERZ R, GANTEFÖR G, SHVARTSBURG A A. Isomer-resolved ion spectroscopy[J]. Phys Rev Lett, 2002, 89(8): 083 001.
|
[29] |
VONDERACH M, EHRLER O T, WEIS P, KAPPES M M. Combining ion mobility spectrometry, mass spectrometry, and photoelectron spectroscopy in a high-transmission instrument[J]. Anal Chem, 2011, 83(3): 1108-1115.
|
[30] |
SHAFFER S A, PRIOR D C, ANDERSON G A, UDSETH H R, SMITH R D. An ion funnel interface for improved ion focusing and sensitivity using electrospray ionization mass spectrometry[J]. Anal Chem, 1998, 70(19): 4111-4119.
|
[31] |
PAPADOPOULOS G, SVENDSEN A, BOYARKIN O V, RIZZO T R. Spectroscopy of mobility-selected biomolecular ions[J]. Faraday Discuss, 2011, 150: 243-255.
|
[32] |
PAPADOPOULOS G, SVENDSEN A, BOYARKIN O V, RIZZO T R. Conformational distribution of bradykinin [bk+2H]2+ revealed by cold ion spectroscopy coupled with FAIMS[J]. J Am Soc Mass Spectrom, 2012, 23(7): 1173-1181.
|
[33] |
FRANKEVICH V, MARTINEZ-LOZANO SINUES P, BARYLYUK K, ZENOBI R. Ion mobility spectrometry coupled to laser-induced fluorescence[J]. Anal Chem, 2013, 85(1): 39-43.
|
[34] |
ZIMMER M. Green fluorescent protein (GFP): applications, structure, and related photophysical behavior[J]. Chem Rev, 2002, 102(3): 759-782.
|
[35] |
FRANKEVICH V E, BARYLYUK K V, MARTINEZ-LOZANO SINUES P, ZENOBI R. Ion mobility spectrometry coupled to laser-induced fluorescence for probing the electronic structure and conformation of gas-phase ions[J]. J Anal Chem, 2014, 69(13): 1215-1219.
|
[36] |
WARNKE S, SEO J, BOSCHMANS J, SOBOTT F, SCRIVENS J H, BLEIHOLDER C, BOWERS M T, GEWINNER S, SCHÖLLKOPF W, PAGEL K. Protomers of benzocaine: solvent and permittivity dependence[J]. J Am Chem Soc, 2015, 137(12): 4236-4242.
|
[37] |
TIAN Z, KASS S R. Gas-phase versus liquid-phase structures by electrospray ionization mass spectrometry[J]. Angew Chem Int Ed, 2009, 121(7): 1347-1349.
|
[38] |
CHANG T M, PRELL J S, WARRICK E R, WILLIAMS E R. Where’s the charge? Protonation sites in gaseous ions change with hydration[J]. J Am Chem Soc, 2012, 134(38): 15805-15813.
|
[39] |
CHAI Y, HU N, PAN Y. Kinetic and thermodynamic control of protonation in atmospheric pressure chemical ionization[J]. J Am Soc Mass Spectrom, 2013, 24(7): 1097-1101.
|
[40] |
FÉRAUD G, ESTEVES-LOPEZ N, DEDONDER-LARDEUX C, JOUVET C. UV spectroscopy of cold ions as a probe of the protonation site[J]. Phys Chem Chem Phys, 2015, 17(39): 25755-25760.
|
[41] |
DALY S, MacALEESE L, DUGOURD P, CHIROT F. Combining structural probes in the gas phase-ion mobility-resolved actionFRET[J]. J Am Soc Mass Spectrom, 2017, 29(1): 133-139.
|
[42] |
KHANAL N, MASELLIS C, KAMRATH M Z, CLEMMER D E, RIZZO T R. Glycosaminoglycan analysis by cryogenic messenger-tagging IR spectroscopy combined with IMS-MS[J]. Anal Chem, 2017, 89(14): 7601-7606.
|
[43] |
KAMRATH M Z, RIZZO T R. Combining ion mobility and cryogenic spectroscopy for structural and analytical studies of biomolecular ions[J]. Acc Chem Res, 2018, 51(6): 1487-1495.
|
[44] |
KHANAL N, MASELLIS C, KAMRATH M Z, CLEMMER D E, RIZZO T R. Cryogenic IR spectroscopy combined with ion mobility spectrometry for the analysis of human milk oligosaccharides[J]. Analyst, 2018, 143(8): 1846-1852.
|
[45] |
WARNKE S, FALEH A B, PELLEGRINELLI R P, YALOVENKO N, RIZZO T R. Combining ultra-high resolution ion mobility spectrometry with cryogenic IR spectroscopy for the study of biomolecular ions[J]. Faraday Discuss, 2019, 217: 114-125.
|
[46] |
BEN FALEH A, WARNKE S, RIZZO T R. Combining ultrahigh-resolution ion-mobility spectrometry with cryogenic infrared spectroscopy for the analysis of glycan mixtures[J]. Anal Chem, 2019, 91(7): 4876-4882.
|
[47] |
TOLMACHEV A V, WEBB I K, IBRAHIM Y M, GARIMELLA S V, ZHANG X, ANDERSON G A, SMITH R D. Characterization of ion dynamics in structures for lossless ion manipulations[J]. Anal Chem, 2014, 86(18): 9162-9168.
|
[48] |
ZHANG X, GARIMELLA S V, PROST S A, WEBB I K, CHEN T C, TANG K, TOLMACHEV A V, NORHEIM R V, BAKER E S, ANDERSON G A. Ion trapping, storage, and ejection in structures for lossless ion manipulations[J]. Anal Chem, 2015, 87(12): 6010-6016.
|
[49] |
YUE L, PELLEGRINELLI R, CARRASCOSA E, WARNKE S, FALEH A, RIZZO T. A new ion mobility tandem mass spectrometer for isomer-specific fragmentation and cryogenic IR spectroscopy of glycans[J]. ASMS, 2020, doi: 10.13140/RG.2.2.21237.81129.
|
[50] |
PELLEGRINELLI R P, YUE L, CARRASCOSA E, WARNKE S, BEN FALEH A, RIZZO T R. How general is anomeric retention during collision-induced dissociation of glycans?[J]. J Am Chem Soc, 2020, 142(13): 5948-5951.
|
[51] |
WARNKE S, BEN FALEH A, RIZZO T R. Toward high-throughput cryogenic IR fingerprinting of mobility-separated glycan isomers[J]. ACS Meas Sci Au, 2021, 1(3): 157-164.
|
[52] |
VOSS J M, KREGEL S J, FISCHER K C, GARAND E. IR-IR conformation specific spectroscopy of Na+ (Glucose) adducts[J]. J Am Soc Mass Spectrom, 2017, 29(1): 42-50.
|