分析元素在ICP-MS取样锥口的空间分布

马海斌, 张彭

马海斌, 张彭. 分析元素在ICP-MS取样锥口的空间分布[J]. 质谱学报, 2016, 37(1): 82-87. DOI: 10.7538/zpxb.youxian.2015.0031
引用本文: 马海斌, 张彭. 分析元素在ICP-MS取样锥口的空间分布[J]. 质谱学报, 2016, 37(1): 82-87. DOI: 10.7538/zpxb.youxian.2015.0031
MA Hai-bin, ZHANG Peng. Spatial Investigation of Analytes at the Sampling Cone of an ICP-MS[J]. Journal of Chinese Mass Spectrometry Society, 2016, 37(1): 82-87. DOI: 10.7538/zpxb.youxian.2015.0031
Citation: MA Hai-bin, ZHANG Peng. Spatial Investigation of Analytes at the Sampling Cone of an ICP-MS[J]. Journal of Chinese Mass Spectrometry Society, 2016, 37(1): 82-87. DOI: 10.7538/zpxb.youxian.2015.0031
马海斌, 张彭. 分析元素在ICP-MS取样锥口的空间分布[J]. 质谱学报, 2016, 37(1): 82-87. CSTR: 32365.14.zpxb.youxian.2015.0031
引用本文: 马海斌, 张彭. 分析元素在ICP-MS取样锥口的空间分布[J]. 质谱学报, 2016, 37(1): 82-87. CSTR: 32365.14.zpxb.youxian.2015.0031
MA Hai-bin, ZHANG Peng. Spatial Investigation of Analytes at the Sampling Cone of an ICP-MS[J]. Journal of Chinese Mass Spectrometry Society, 2016, 37(1): 82-87. CSTR: 32365.14.zpxb.youxian.2015.0031
Citation: MA Hai-bin, ZHANG Peng. Spatial Investigation of Analytes at the Sampling Cone of an ICP-MS[J]. Journal of Chinese Mass Spectrometry Society, 2016, 37(1): 82-87. CSTR: 32365.14.zpxb.youxian.2015.0031

分析元素在ICP-MS取样锥口的空间分布

Spatial Investigation of Analytes at the Sampling Cone of an ICP-MS

  • 摘要: 为提高电感耦合等离子体质谱仪(ICP-MS)的检测灵敏度,需保证分析离子在ICP与质谱仪间的传递效率。本研究利用激光诱导荧光技术,以钡元素为分析粒子,在不同ICP功率、雾化气流速的条件下,对分析元素在ICP-MS取样锥前端的空间分布及等离子体温度的变化进行研究。结果表明,ICP功率、雾化气流速对被分析物质在等离子体内的原子化及电离过程有很大的影响,但增加ICP功率并不一定能提高被分析粒子到达ICP-MS取样锥口的数量。该结果可为提高ICP-MS仪器性能及改进设计方法提供理论参考。
    Abstract: To improve the sensitivity of an inductively coupled plasma mass spectrometer (ICP-MS), the analytes ions must be transmitted from the plasma through the interfacial region as efficient as possible. Understanding transport behaviors of analytes from the plasma through the sampling cone require knowledge of analytes spatial distributions at the tip of the sampling cone. Relying on laser induced fluorescence technique, the temperature variations of the plasma and spatial distribution of barium at the tip of the sampling cone of an ICP under a seris of experimental conditions were investigated. The result shows that ICP incident power and nebulizer flow have significant impact on the atomization and ionization of analytes. However, higher ICP incident power does not mean higher efficiency of analytes reaching the sampling cone. The results can provide some guides to design improvement of a commercial ICP-MS.
  • [1] 严顺英,李秋妍,荣百炼. 电感耦合等离子体质谱法测定甲醇中微量元素[J]. 质谱学报,2014,35(1):85-89.YAN Shunying, LI Qiuyan, RONG Bailian. Determination of trace elements in alcohol by ICP-MS[J]. Journal of Chinese Mass Spectrometry Society, 2014, 35(1): 85-89(in Chinese)
    [2] 胡文兵,汪福意. 质谱在金属抗癌药物与蛋白质相互作用研究中的应用[J]. 质谱学报,2010,31(6):354-361.HU Wenbing, WANG Fuyi. Application of mass spectrometry in research on the interactions of anticancer metallodrugs with proteins[J]. Journal of Chinese Mass Spectrometry Society, 2010, 31(6): 354-361(in Chinese)
    [3] 李明,李红梅,熊行创,等. 质谱动力学方法原理及应用[J]. 质谱学报,2012,33(4):202-207.LI Ming, LI Hongmei, XIONG Xingchuang, et al. Theory and application of mass spectrometry kinetic method[J]. Journal of Chinese Mass Spectrometry Society, 2012, 33(4): 202-207(in Chinese).
    [4] MONTASER A, GOLIGHTLY D W. Inductively coupled plasmas in analytical atomic spectrometry[M]. 2nd. German: VCH Publisher, 1992: 12-15.
    [5] STEWART I I, OLESIK J W. Time-resolved measurements with single droplet introduction to investigate space-charge effects in plasma mass spectrometry[J]. J Am Soc Mass Spectrom, 1999, 10(2): 159-174.
    [6] LEHN S A, WARNER K A, GAMEZ G, et al. Effect of sample matrix on the fundamental properties of the inductively coupled plasma[J]. Spectrochim Acta: Part B, 2003, 58(10): 1785-1806.
    [7] DOUGLAS D J, FRENCH J B. Gas dymanics of the inductively coupled plasma mass spectrometry interface[J]. J Anal at Spectrom, 1988, 3(6): 743-746.
    [8] SPENCER R L, KROGEL J, PALMER J, et al. Modeling of the upstream and nozzle gas flow in the first vacuum stage of the ICP-MS studies of the ICP-MS via the direct simulation Monte Carlo algorithm[J]. Spectrochim Acta: Part B, 2009, 64(5): 465-473.
    [9] ROBERT T. Practical Guide to ICP-MS[M]. New York: Marcel Dekker Inc., 2004: 125-127.
    [10] NIU H, HOUK R S. Langmuir probe measurements of the ion extraction process in ICP-MS. I. Spatially resolved measurements of electron density and electron temperature[J]. Spectrochim Acta: Part B, 1996, 51(6): 779-786.
    [11] MACEDONE J H, GAMMON D J, FARNSWORTH P B. Factors affecting analyte transport through the sampling orifice of an inductively coupled plasma mass spectrometer[J]. Spectrochim Acta: Part B, 2001, 56(9): 1687-1695.
    [12] MILLS A A, MACEDONE J H, FARNSWORTH P B. High resolution imaging of barium ions and atoms near the sampling cone of an inductively coupled plasma mass spectrometer[J]. Spectrochim Acta: Part B, 2006, 61(9): 1039-1049.
    [13] HOLIDAY A E, BEAUCHEMIN D. Spatial profiling of analyte signal intensities in inductively coupled plasma mass spectrometry[J]. Spectrochim Acta: Part B, 2004, 59(3): 291-311.
    [14] SPENCE R L, TAYLOR N, FARNSWORTH P B. Comparison of calculated and experimental flow velocities upstream form the sampling cone of an inductively coupled plasma mass spectrometer[J]. Spectrochim Acta: Part B, 2009, 64(9): 921-924.
    [15] INGLE J D JR, CROUCH S R. Spectrochemical Analysis[M]. New Jersey: Prentice Hall, 1988: 26-27.
    [16] CICERONE M T, FARNSWORTH P B. A simple noninvasive method for the measurement of gas flow velocities in an inductively coupled plasma[J]. Spectrochim Acta: Part B, 1989, 44(9): 897-907.
计量
  • 文章访问数:  736
  • HTML全文浏览量:  0
  • PDF下载量:  877
  • 被引次数: 0
出版历程
  • 刊出日期:  2016-01-19

目录

    /

    返回文章
    返回