热裂解-在线真空紫外光电离质谱法研究固体物热裂解

王健, 王毓, 胡永华, 文武, 黄鹊, 潘洋

王健, 王毓, 胡永华, 文武, 黄鹊, 潘洋. 热裂解-在线真空紫外光电离质谱法研究固体物热裂解[J]. 质谱学报, 2015, 36(6): 513-520. DOI: 10.7538/zpxb.youxian.2015.0035
引用本文: 王健, 王毓, 胡永华, 文武, 黄鹊, 潘洋. 热裂解-在线真空紫外光电离质谱法研究固体物热裂解[J]. 质谱学报, 2015, 36(6): 513-520. DOI: 10.7538/zpxb.youxian.2015.0035
WANG Jian, WANG Yu, HU Yong-hua, WEN Wu, HUANG Que, PAN Yang. Study on the Pyrolysis of Solid Materials with Pyrolysis-Online Vacuum Ultraviolet Photoionization Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2015, 36(6): 513-520. DOI: 10.7538/zpxb.youxian.2015.0035
Citation: WANG Jian, WANG Yu, HU Yong-hua, WEN Wu, HUANG Que, PAN Yang. Study on the Pyrolysis of Solid Materials with Pyrolysis-Online Vacuum Ultraviolet Photoionization Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2015, 36(6): 513-520. DOI: 10.7538/zpxb.youxian.2015.0035
王健, 王毓, 胡永华, 文武, 黄鹊, 潘洋. 热裂解-在线真空紫外光电离质谱法研究固体物热裂解[J]. 质谱学报, 2015, 36(6): 513-520. CSTR: 32365.14.zpxb.youxian.2015.0035
引用本文: 王健, 王毓, 胡永华, 文武, 黄鹊, 潘洋. 热裂解-在线真空紫外光电离质谱法研究固体物热裂解[J]. 质谱学报, 2015, 36(6): 513-520. CSTR: 32365.14.zpxb.youxian.2015.0035
WANG Jian, WANG Yu, HU Yong-hua, WEN Wu, HUANG Que, PAN Yang. Study on the Pyrolysis of Solid Materials with Pyrolysis-Online Vacuum Ultraviolet Photoionization Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2015, 36(6): 513-520. CSTR: 32365.14.zpxb.youxian.2015.0035
Citation: WANG Jian, WANG Yu, HU Yong-hua, WEN Wu, HUANG Que, PAN Yang. Study on the Pyrolysis of Solid Materials with Pyrolysis-Online Vacuum Ultraviolet Photoionization Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2015, 36(6): 513-520. CSTR: 32365.14.zpxb.youxian.2015.0035

热裂解-在线真空紫外光电离质谱法研究固体物热裂解

Study on the Pyrolysis of Solid Materials with Pyrolysis-Online Vacuum Ultraviolet Photoionization Mass Spectrometry

  • 摘要: 为了实时、在线研究一些固体物质的热裂解产物,自行搭建了一套热裂解-在线真空紫外光电离质谱装置。利用真空紫外灯作为电离源,并结合垂直引入飞行时间质谱,初步研究了聚丙烯在400~600 ℃和卷烟烟丝在400~700 ℃热解时释放的气相产物。本实验不仅在线获得了一系列热解气相产物的光电离质谱图,还了解了各产物,如丙烯(m/z 42)、戊二烯(m/z 68)等在不同温度下随时间的变化曲线,从而获知热解反应的动态变化过程。结果表明,真空紫外光电离质谱法是研究固体物热裂解的重要手段,可以为研究热解动态变化和产物形成机理提供重要信息。
    Abstract: An online pyrolysis-vacuum ultraviolet photoionization mass spectrometer (PY-VUV PIMS) was built for the analysis of pyrolysis products of solid materials. Vacuum ultraviolet photoionization is a “soft” ionization method producing few or no fragments of molecular ions, making the identification and interpretation of complex pyrolysis products in real time possible. In this work, the gaseous pyrolysis of polypropylene at the temperatures range of 400 ℃ to 600 ℃ were firstly studied with this new-built setup. A series of mass spectra of gaseous products were obtained, and the time-evolved curves for the products like propylene (m/z 42) and pentadiene (m/z 68) were also recorded. It was found that the increase of temperature can dramatically shorten the reaction time. Due to the effect of secondary reactions, the formation time of pentadiene is a little later than that of propylene produced only from primary reaction. Reactions like chain fission, back-biting, and β-scission contribute to most of the primary reactions. The pyrolysis of tobacco was also performed with PY-VUV PIMS in the temperature range from 400 ℃ to 700 ℃, and the effects of reaction temperature on the pyrolysis products intensity were studied. For relative small molecular weight compounds like propylene (m/z 42), their relative intensities increase all the time as pyrolysis temperature rises. As for acetone/propanal (m/z 58) and some other compounds, their relative intensities first rise to the maximum and then decrease. In the case of relatively large molecular weight compounds like nicotine (m/z 162), they decrease with temperature increases, indicating that it have suffered secondary reactions under high temperature and decomposed into small molecules. Results show that vacuum ultraviolet photoionization mass spectrometry is a powerful method for pyrolysis study, which can offer important information for learning the pyrolysis mechanisms and dynamic processes.
  • [1] GUO W, CHUANG T H, HUANG S T, et al. Thermal degradation behaviour of aromatic poly (ester-imide) investigated by pyrolysis-GC/MS[J]. Journal of Polymer Research, 2007, 14(5): 401-409.
    [2] LIU Q, WANG S, ZHENG Y, et al. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis[J]. Journal of Analytical and Applied Pyrolysis, 2008, 82(1): 170-177.
    [3] SENNECA O, CIARAVOLO S, NUNZIATA A. Composition of the gaseous products of pyrolysis of tobacco under inert and oxidative conditions[J]. Journal of Analytical and Applied Pyrolysis, 2007, 79(1/2): 234-243.
    [4] ADAM T, FERGE T, MITSCHKE S, et al. Discrimination of three tobacco types (Burley, Virginia and Oriental) by pyrolysis single-photon ionization-time-of-flight mass spectrometry and advanced statistical methods[J]. Analytical and Bioanalytical Chemistry, 2005, 381(2): 487-499.
    [5] ADAM T, STREIBEL T, MITSCHKE S, et al. Application of time-of-flight mass spectrometry with laser-based photoionization methods for analytical pyrolysis of PVC and tobacco[J]. Journal of Analytical and Applied Pyrolysis, 2005, 74(1/2): 454-464.
    [6] WU Q, HUA L, HOU K, et al. A combined single photon ionization and photoelectron ionization source for orthogonal acceleration time-of-flight mass spectrometer[J]. International Journal of Mass Spectrometry, 2010, 295(1/2): 60-64.
    [7] TAN G B, GAO W, HUANG Z X, et al. Vacuum ultraviolet single-photon ionization time-of-flight mass spectrometer[J]. Chinese Journal of Analytical Chemistry, 2011, 39(10): 1470-1475.
    [8] LI J, CAI J, YUAN T, et al. A thermal decomposition study of polymers by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2009, 23(9): 1269-1274.
    [9] JIA L Y, WENG J J, WANG Y, et al. Online analysis of volatile products from bituminous coal pyrolysis with synchrotron vacuum ultraviolet photoionization mass spectrometry[J]. Energy & Fuels, 2013, 27(2): 694-701.
    [10] WENG J, JIA L, WANG Y, et al. Pyrolysis study of poplar biomass by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2347-2354.
    [11] ZHU Z, WANG J, QIU K, et al. Note: A novel vacuum ultraviolet light source assembly with aluminum-coated electrodes for enhancing the ionization efficiency of photoionization mass spectrometry[J]. Review of Scientific Instruments, 2014, 85(4): 0461101-0461103.
    [12] S RUM L, G R NLI M G, HUSTAD J E. Pyrolysis characteristics and kinetics of municipal solid wastes[J]. Fuel, 2001, 80(9): 1217-1227.
    [13] KAMINSKY W, PREDEL M, SADIKI A. Feedstock recycling of polymers by pyrolysis in a fluidised bed[J]. Polymer Degradation and Stability, 2004, 85(3): 1045-1050.
    [14] LIN Y H, YANG M H. Catalytic pyrolysis of polyolefin waste into valuable hydrocarbons over reused catalyst from refinery FCC units[J]. Applied Catalysis A: General, 2007, 328(2): 132-139.
    [15] AGUADO R, OLAZAR M, GAIS N B, et al. Kinetic study of polyolefin pyrolysis in a conical spouted bed reactor[J]. Industrial & Engineering Chemistry Research, 2002, 41(18): 4559-4566.
    [16] SERRANO D P, AGUADO J, ESCOLA J M, et al. An investigation into the catalytic cracking of LDPE using Py-GC/MS[J]. Journal of Analytical and Applied Pyrolysis, 2005, 74(1/2): 370-378.
    [17] LATTIMER R P. Pyrolysis field ionization mass spectrometry of polyolefins[J]. Journal of Analytical and Applied Pyrolysis, 1995, 31(2): 203-225.
    [18] KRUSE T M, WONG H W, BROADBELT L J. Mechanistic modeling of polymer pyrolysis: Polypropylene[J]. Macromolecules, 2003, 36(25): 9594-9607.
    [19] BAKER R R. Product formation mechanisms inside a burning cigarette[J]. Progress in Energy and Combustion Science, 1981, 7(2): 135-153.
    [20] YI S C, HAJALIGOL M R, JEONG S H. The prediction of the effects of tobacco type on smoke composition from the pyrolysis modeling of tobacco shreds[J]. Journal of Analytical and Applied Pyrolysis, 2005, 74(1/2): 181-192.
    [21] PAN Y, HU Y, WANG J, et al. Online characterization of isomeric/isobaric components in the gas phase of mainstream cigarette smoke by tunable synchrotron radiation vacuum ultraviolet photoionization time-of-flight mass spectrometry and photoionization efficiency curve simulation[J]. Analytical Chemistry, 2013, 85(24): 11993-12001.
    [22] EVANS R J, MILNE T A. Molecular characterization of the pyrolysis of biomass[J]. Energy & Fuels, 1987, 1(2): 123-137.
计量
  • 文章访问数:  917
  • HTML全文浏览量:  0
  • PDF下载量:  843
  • 被引次数: 0
出版历程
  • 刊出日期:  2015-11-19

目录

    /

    返回文章
    返回