[1] |
LIU D, SHRIVER Z, VENKATARAMAN G, et al. Tumor cell surface heparan sulfate as cryptic promoters or inhibitors of tumor growth and metastasis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(2): 568-573.
|
[2] |
ZYGALAKI E, TSAROUCHA E G, KAKLAMANIS L, et al. Quantitative real-time reverse transcription PCR study of the expression of vascular endothelial growth factor (VEGF) splice variants and VEGF receptors (VEGFR-1 and VEGFR-2) in non small cell lung cancer[J]. Clinical Chemistry, 2007, 53(8): 1433-1439.
|
[3] |
COUCHMAN J R. Syndecans: Proteoglycan regulators of cell-surface microdomains?[J]. Nature Reviews Molecular Cell Biology, 2003, 4(12): 926-938.
|
[4] |
PERRIMON N, BERNFIELD M. Specificities of heparan sulphate proteoglycans in developmental processes[J]. Nature, 2000, 404(6 779): 725-728.
|
[5] |
CARLSSON P, PRESTO J, SPILLMANN D, et al. Heparin/heparan sulfate biosynthesis[J]. Journal of Biological Chemistry, 2008, 283(29): 20008-20014.
|
[6] |
KAMIMURA K, KOYAMA T, HABUCHI H, et al. Specific and flexible roles of heparan sulfate modifications in Drosophila FGF signaling[J]. Journal of Cell Biology, 2006, 174(6): 773-778.
|
[7] |
JOHAN K, DOROTHE S, JINPING L, et al. Interactions between heparan sulfate and proteins: The concept of specificity[J]. The Journal of Cell Biology, 2006, 174(3): 323-327.
|
[8] |
CASU B, LINDAHL U. Structure and biological interactions of heparin and heparan sulfate[J]. Advances in Carbohydrate Chemistry and Biochemistry, 2001, 57: 159-206.
|
[9] |
ESKO J D, SELLECK S B. Order out of chaos: Assembly of ligand binding sites in heparan sulfate[J]. Annual Review of Biochemistry, 2002, 71(1): 435-471.
|
[10] |
ESKO J D, LINDAHL U. Molecular diversity of heparan sulfate[J]. The Journal of Clinical Investigation, 2001, 108(2): 169-173.
|
[11] |
LINDAHL U, KUSCHE-GULLBERG M, KJELLEN L. Regulated diversity of heparan sulfate[J]. Journal of Biological Chemistry, 1998, 273(39): 24979-24982.
|
[12] |
FANG C, GABRIEL S, LARS-ÅKE F, et al. Non-conserved, S-nitrosylated cysteines in glypican-1 react with N-unsubstituted glucosamines in heparan sulfate and catalyze deaminative cleavage[J]. Glycobiology, 2012, 22(11): 1480-1486.
|
[13] |
TOIDA T, YOSHIDA H, TOYODA H, et al. Structural differences and the presence of unsubstituted amino groups in heparan sulphates from different tissues and species[J]. Biochemical Journal, 1997, 322(2): 499-506.
|
[14] |
WESTLING C, LINDAHL U. Location of N-unsubstituted glucosamine residues in heparan sulfate[J]. Journal of Biological Chemistry, 2002, 277(51): 49247-49255.
|
[15] |
REES M, PATTISON D M. Oxidation of heparan sulphate by hypochlorite: Role of N-chloro derivatives and dichloramine-dependent fragmentation[J]. Biochemical Journal, 2005, 391(1): 125-134.
|
[16] |
WEI Z, LYON M, GALLAGHER J T. Distinct substrate specificities of bacterial heparinases against N-unsubstituted glucosamine residues in heparan sulfate[J]. Journal of Biological Chemistry, 2005, 280(16): 15742-15748.
|
[17] |
SHI X, ZAIA J. Organ-specific heparan sulfate structural phenotypes[J]. Journal of Biological Chemistry, 2009, 284(18): 11806-11814.
|
[18] |
LIU J, SHRIVER Z, BLAIKLOCK P, et al. Heparan sulfate D-glucosaminyl 3-O-sulfotransferase-3A sulfates N-unsubstituted glucosamine residues[J]. Journal of Biological Chemistry, 1999, 274(53): 38155-38162.
|
[19] |
JIAN L, ZACH S, MARSHALL P R. Characterization of a heparan sulfate octasaccharide that binds to herpes simplex virus type 1 glycoprotein D[J]. Journal of Biological Chemistry, 2002, 277(36): 33456-33467.
|
[20] |
SHUKLA D, LIU J, BLAIKLOCK P, et al. A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry[J]. Cell, 1999, 99(1): 13-22.
|
[21] |
VANPOUILLE C, DELIGNY A, DELEHEDDE M, et al. The heparin/heparan sulfate sequence that interacts with cyclophilin B contains a 3-O-sulfated N-unsubstituted glucosamine residue[J]. Journal of Biological Chemistry, 2007, 282(33): 24416-24429.
|
[22] |
SATOMI N, EKO P, NAOKO T, et al. Heparan sulfate containing unsubstituted glucosamine residues: Biosynthesis and heparanase-inhibitory activity[J]. Journal of Biological Chemistry, 2014, 289(22): 15231-15243.
|
[23] |
WEI Z, DEAKIN J A, BLAUM B S, et al. Preparation of heparin/heparan sulfate oligosaccharides with internal N-unsubstituted glucosamine residues for functional studies[J]. Glycoconjugate Journal, 2011, 28(9): 525-535.
|
[24] |
WOLFF J J, CHI L, LINHARDT R J, et al. Distinguishing glucuronic from iduronic acid in glycosaminoglycan tetrasaccharides by using electron detachment dissociation[J]. Analytical Chemistry, 2007, 79(5): 2015-2022.
|
[25] |
HUANG R, LIU J, SHARP J S. An approach for separation and complete structural sequencing of heparin/heparan sulfate-like oligosaccharides[J]. Analytical Chemistry, 2013, 85(12): 5787-5795.
|
[26] |
SCHENAUER M R, MEISSEN J K, YOUJIN S, et al. Heparan sulfate separation, sequencing, and isomeric differentiation: Ion mobility spectrometry reveals specific iduronic and glucuronic acid-containing hexasaccharides[J]. Analytical Chemistry, 2009, 81(24): 10179-10185.
|
[27] |
SHI X, HUANG Y, MAO Y, et al. Tandem mass spectrometry of heparan sulfate negative ions:Sulfate loss patterns and chemical modification methods for improvement of product ion profiles[J]. Journal of the American Society for Mass Spectrometry, 2012, 23(9): 1498-1511.
|
[28] |
林江慧,张建伟,张惠芳,等. 硫酸类肝素二糖的质谱裂解规律探析[J]. 质谱学报,2015,36(2):111-119. LIN Jianghui, ZHANG Jianwei, ZHANG Huifang, et al. Study on the fragmentation patterns of heparan sulfate disaccharides by ESI-MS[J]. Journal of Chinese Mass Spectrometry Society, 2015, 36(2): 111-119(in Chinese).
|
[29] |
林江慧,杜佳燕,付青,等. 离子肼飞行时间质谱表征硫酸软骨素硫酸角质素二糖[J]. 分析实验室,2015,34(3):270-274.LIN Jianghui, DU Jiayan, FU Qing, et al. Characterization of disaccharides from chondroitin/dermatan sulfate by ion trap time-of-flight hybrid mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2015, 34(3): 270-274(in Chinese).
|
[30] |
HU H, HUANG Y, YU X, et al. A computational framework for heparan sulfate sequencing using high-resolution tandem mass spectra[J]. Molecular and Cellular Proteomics, 2014, 13(9): 2490-2502.
|
[31] |
LIANG Q T, XIAO X M, LIN J H, et al. A new sequencing approach for N-unsubstituted heparin/heparan sulfate oligosaccharides[J]. Glycobiology, 2015, 25(7): 714-725.
|
[32] |
BEAUDET J M, WEYERS A, SOLAKYILDIRIM K, et al. Impact of autoclave sterilization on the activity and structure of formulated heparin[J]. Journal of Pharmaceutical Sciences, 2011, 100(8): 3396-3404.
|
[33] |
FU L, LI L, CAI C, et al. Heparin stability by determining unsubstituted amino groups using hydrophilic interaction chromatography mass spectrometry[J]. Analytical Biochemistry, 2014, 461(5): 46-48.
|
[34] |
DONEANU C E, WEIBIN C, GEBLER J C. Analysis of oligosaccharides derived from heparin by ion-pair reversed-phase chromatography/mass spectrometry[J]. Analytical Chemistry, 2009, 81(9): 3485-3499.
|
[35] |
DOMON B, COSTELLO C E. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates[J]. Glycoconjugate Journal, 1988, 5(4): 397-409.
|