N-非取代葡糖胺残基肝素四糖的制备与表征

梁群焘, 魏峥

梁群焘, 魏峥. 含N-非取代葡糖胺残基肝素四糖的制备与表征[J]. 质谱学报, 2016, 37(6): 492-503. DOI: 10.7538/zpxb.youxian.2016.0027
引用本文: 梁群焘, 魏峥. 含N-非取代葡糖胺残基肝素四糖的制备与表征[J]. 质谱学报, 2016, 37(6): 492-503. DOI: 10.7538/zpxb.youxian.2016.0027
LIANG Qun-tao, WEI Zheng. Preparation and Characterization of Heparin Tetrasaccharide with N-unsubstituted Glucosamine Residues[J]. Journal of Chinese Mass Spectrometry Society, 2016, 37(6): 492-503. DOI: 10.7538/zpxb.youxian.2016.0027
Citation: LIANG Qun-tao, WEI Zheng. Preparation and Characterization of Heparin Tetrasaccharide with N-unsubstituted Glucosamine Residues[J]. Journal of Chinese Mass Spectrometry Society, 2016, 37(6): 492-503. DOI: 10.7538/zpxb.youxian.2016.0027
梁群焘, 魏峥. 含N-非取代葡糖胺残基肝素四糖的制备与表征[J]. 质谱学报, 2016, 37(6): 492-503. CSTR: 32365.14.zpxb.youxian.2016.0027
引用本文: 梁群焘, 魏峥. 含N-非取代葡糖胺残基肝素四糖的制备与表征[J]. 质谱学报, 2016, 37(6): 492-503. CSTR: 32365.14.zpxb.youxian.2016.0027
LIANG Qun-tao, WEI Zheng. Preparation and Characterization of Heparin Tetrasaccharide with N-unsubstituted Glucosamine Residues[J]. Journal of Chinese Mass Spectrometry Society, 2016, 37(6): 492-503. CSTR: 32365.14.zpxb.youxian.2016.0027
Citation: LIANG Qun-tao, WEI Zheng. Preparation and Characterization of Heparin Tetrasaccharide with N-unsubstituted Glucosamine Residues[J]. Journal of Chinese Mass Spectrometry Society, 2016, 37(6): 492-503. CSTR: 32365.14.zpxb.youxian.2016.0027

N-非取代葡糖胺残基肝素四糖的制备与表征

Preparation and Characterization of Heparin Tetrasaccharide with N-unsubstituted Glucosamine Residues

  • 摘要: 生物体内含有N-非取代葡糖胺残基(GlcNH3+)结构的硫酸类肝素(HS)具有重要的生物和病理生理学功能。但这种HS在生物体内的含量较少、获得困难,而采用化学方法制备与生物体内结构相似的这种寡糖,有助于研究HS在生物体内的功能作用。本实验以高硫的肝素四糖为原料,用部分脱N位硫酸根的方法,制备了含1个和2个GlcNH3+的肝素四糖,并采用液相色谱-离子阱-飞行时间质谱(LC/MS-IT-TOF)法对其进行结构检测。通过分析(EIC)-MS和MS2提取离子流图发现,含不同GlcNH3+数目的肝素四糖具有不同的裂解规律,含GlcNH3+数目越多,生成的碎片离子越多,这为MS方法进一步鉴定和定量测定含GlcNH3+结构的寡糖奠定了基础。
    Abstract: The rare GlcNH3+ residues implicated in important cellbiological and pathophysiological phenomena are also now particularly hot subjects in the pharmaceutical industry. Recently its tumour invasion and metastasis has raised interest. However, it is difficult to prepare naturally-occuring, because of their low abundance in GlcNH3+ containing oligosaccharides from HS. Therefore, the ability to chemically generate a series of structurally-defined oligosaccharides containing GlcNH3+ residues would greatly contribute to investigating their natural role in HS. In this study, heparin tetrasaccharides (dp4s) possessing one and two GlcNH3+ residues were prepared from partially de N-sulfation of the fully sulfated dp4. Then the structure of dp4s was further detected by liquid chromatography-ion trap/time-of-flight mass spectrometry (LC/MS-IT-TOF). Two dp4s (dp4-1 and dp4-2) are obtained, in which dp4-1 with one GlcNH3+ residue located in the central position, while dp4-2 with two GlcNH3+ residues located in the central and reducing terminal positions.
    The results of extracted ion chromatogram (EIC) in LC/MS-IT-TOF system suggest that minor sulfate losses of the dp4s appear in MS ion source, but most of the samples maintain the original structure, which is helpful for determining the accurate molecular weight of heparin/HS oligosaccharides with GlcNH3+ residues. MS and MS2 analysis show different fragmentation patterns of dp4s with different GlcNH3+ residues using the same MS parameters. 0,2X2 fragmentation near the non-reducing end of oligosaccharide was only detected in dp4-1. Meanwhile, 1,5X2, 2,4A4 and 1,5A4 fragmentations were only appeared in dp4-2. The dp4 with higher GlcNH3+ residues revealed more cross-ring cleavage patterns, suggesting that higher positive charges might make the ring more fragile, presumably reflecting the markedly different conformations and chemical environments at these positions, which results in different dissociation of dp4s in MS. This provides a foundation for further structural identification and quantification of GlcNH3+ oligosaccharides by mass spectrum analysis, which could lead to a greater understanding of the biological roles of GlcNH3+ residues in HS/heparin.
  • [1] LIU D, SHRIVER Z, VENKATARAMAN G, et al. Tumor cell surface heparan sulfate as cryptic promoters or inhibitors of tumor growth and metastasis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(2): 568-573.
    [2] ZYGALAKI E, TSAROUCHA E G, KAKLAMANIS L, et al. Quantitative real-time reverse transcription PCR study of the expression of vascular endothelial growth factor (VEGF) splice variants and VEGF receptors (VEGFR-1 and VEGFR-2) in non small cell lung cancer[J]. Clinical Chemistry, 2007, 53(8): 1433-1439.
    [3] COUCHMAN J R. Syndecans: Proteoglycan regulators of cell-surface microdomains?[J]. Nature Reviews Molecular Cell Biology, 2003, 4(12): 926-938.
    [4] PERRIMON N, BERNFIELD M. Specificities of heparan sulphate proteoglycans in developmental processes[J]. Nature, 2000, 404(6 779): 725-728.
    [5] CARLSSON P, PRESTO J, SPILLMANN D, et al. Heparin/heparan sulfate biosynthesis[J]. Journal of Biological Chemistry, 2008, 283(29): 20008-20014.
    [6] KAMIMURA K, KOYAMA T, HABUCHI H, et al. Specific and flexible roles of heparan sulfate modifications in Drosophila FGF signaling[J]. Journal of Cell Biology, 2006, 174(6): 773-778.
    [7] JOHAN K, DOROTHE S, JINPING L, et al. Interactions between heparan sulfate and proteins: The concept of specificity[J]. The Journal of Cell Biology, 2006, 174(3): 323-327.
    [8] CASU B, LINDAHL U. Structure and biological interactions of heparin and heparan sulfate[J]. Advances in Carbohydrate Chemistry and Biochemistry, 2001, 57: 159-206.
    [9] ESKO J D, SELLECK S B. Order out of chaos: Assembly of ligand binding sites in heparan sulfate[J]. Annual Review of Biochemistry, 2002, 71(1): 435-471.
    [10] ESKO J D, LINDAHL U. Molecular diversity of heparan sulfate[J]. The Journal of Clinical Investigation, 2001, 108(2): 169-173.
    [11] LINDAHL U, KUSCHE-GULLBERG M, KJELLEN L. Regulated diversity of heparan sulfate[J]. Journal of Biological Chemistry, 1998, 273(39): 24979-24982.
    [12] FANG C, GABRIEL S, LARS-ÅKE F, et al. Non-conserved, S-nitrosylated cysteines in glypican-1 react with N-unsubstituted glucosamines in heparan sulfate and catalyze deaminative cleavage[J]. Glycobiology, 2012, 22(11): 1480-1486.
    [13] TOIDA T, YOSHIDA H, TOYODA H, et al. Structural differences and the presence of unsubstituted amino groups in heparan sulphates from different tissues and species[J]. Biochemical Journal, 1997, 322(2): 499-506.
    [14] WESTLING C, LINDAHL U. Location of N-unsubstituted glucosamine residues in heparan sulfate[J]. Journal of Biological Chemistry, 2002, 277(51): 49247-49255.
    [15] REES M, PATTISON D M. Oxidation of heparan sulphate by hypochlorite: Role of N-chloro derivatives and dichloramine-dependent fragmentation[J]. Biochemical Journal, 2005, 391(1): 125-134.
    [16] WEI Z, LYON M, GALLAGHER J T. Distinct substrate specificities of bacterial heparinases against N-unsubstituted glucosamine residues in heparan sulfate[J]. Journal of Biological Chemistry, 2005, 280(16): 15742-15748.
    [17] SHI X, ZAIA J. Organ-specific heparan sulfate structural phenotypes[J]. Journal of Biological Chemistry, 2009, 284(18): 11806-11814.
    [18] LIU J, SHRIVER Z, BLAIKLOCK P, et al. Heparan sulfate D-glucosaminyl 3-O-sulfotransferase-3A sulfates N-unsubstituted glucosamine residues[J]. Journal of Biological Chemistry, 1999, 274(53): 38155-38162.
    [19] JIAN L, ZACH S, MARSHALL P R. Characterization of a heparan sulfate octasaccharide that binds to herpes simplex virus type 1 glycoprotein D[J]. Journal of Biological Chemistry, 2002, 277(36): 33456-33467.
    [20] SHUKLA D, LIU J, BLAIKLOCK P, et al. A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry[J]. Cell, 1999, 99(1): 13-22.
    [21] VANPOUILLE C, DELIGNY A, DELEHEDDE M, et al. The heparin/heparan sulfate sequence that interacts with cyclophilin B contains a 3-O-sulfated N-unsubstituted glucosamine residue[J]. Journal of Biological Chemistry, 2007, 282(33): 24416-24429.
    [22] SATOMI N, EKO P, NAOKO T, et al. Heparan sulfate containing unsubstituted glucosamine residues: Biosynthesis and heparanase-inhibitory activity[J]. Journal of Biological Chemistry, 2014, 289(22): 15231-15243.
    [23] WEI Z, DEAKIN J A, BLAUM B S, et al. Preparation of heparin/heparan sulfate oligosaccharides with internal N-unsubstituted glucosamine residues for functional studies[J]. Glycoconjugate Journal, 2011, 28(9): 525-535.
    [24] WOLFF J J, CHI L, LINHARDT R J, et al. Distinguishing glucuronic from iduronic acid in glycosaminoglycan tetrasaccharides by using electron detachment dissociation[J]. Analytical Chemistry, 2007, 79(5): 2015-2022.
    [25] HUANG R, LIU J, SHARP J S. An approach for separation and complete structural sequencing of heparin/heparan sulfate-like oligosaccharides[J]. Analytical Chemistry, 2013, 85(12): 5787-5795.
    [26] SCHENAUER M R, MEISSEN J K, YOUJIN S, et al. Heparan sulfate separation, sequencing, and isomeric differentiation: Ion mobility spectrometry reveals specific iduronic and glucuronic acid-containing hexasaccharides[J]. Analytical Chemistry, 2009, 81(24): 10179-10185.
    [27] SHI X, HUANG Y, MAO Y, et al. Tandem mass spectrometry of heparan sulfate negative ions:Sulfate loss patterns and chemical modification methods for improvement of product ion profiles[J]. Journal of the American Society for Mass Spectrometry, 2012, 23(9): 1498-1511.
    [28] 林江慧,张建伟,张惠芳,等. 硫酸类肝素二糖的质谱裂解规律探析[J]. 质谱学报,2015,36(2):111-119. LIN Jianghui, ZHANG Jianwei, ZHANG Huifang, et al. Study on the fragmentation patterns of heparan sulfate disaccharides by ESI-MS[J]. Journal of Chinese Mass Spectrometry Society, 2015, 36(2): 111-119(in Chinese).
    [29] 林江慧,杜佳燕,付青,等. 离子肼飞行时间质谱表征硫酸软骨素硫酸角质素二糖[J]. 分析实验室,2015,34(3):270-274.LIN Jianghui, DU Jiayan, FU Qing, et al. Characterization of disaccharides from chondroitin/dermatan sulfate by ion trap time-of-flight hybrid mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2015, 34(3): 270-274(in Chinese).
    [30] HU H, HUANG Y, YU X, et al. A computational framework for heparan sulfate sequencing using high-resolution tandem mass spectra[J]. Molecular and Cellular Proteomics, 2014, 13(9): 2490-2502.
    [31] LIANG Q T, XIAO X M, LIN J H, et al. A new sequencing approach for N-unsubstituted heparin/heparan sulfate oligosaccharides[J]. Glycobiology, 2015, 25(7): 714-725.
    [32] BEAUDET J M, WEYERS A, SOLAKYILDIRIM K, et al. Impact of autoclave sterilization on the activity and structure of formulated heparin[J]. Journal of Pharmaceutical Sciences, 2011, 100(8): 3396-3404.
    [33] FU L, LI L, CAI C, et al. Heparin stability by determining unsubstituted amino groups using hydrophilic interaction chromatography mass spectrometry[J]. Analytical Biochemistry, 2014, 461(5): 46-48.
    [34] DONEANU C E, WEIBIN C, GEBLER J C. Analysis of oligosaccharides derived from heparin by ion-pair reversed-phase chromatography/mass spectrometry[J]. Analytical Chemistry, 2009, 81(9): 3485-3499.
    [35] DOMON B, COSTELLO C E. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates[J]. Glycoconjugate Journal, 1988, 5(4): 397-409.
计量
  • 文章访问数:  825
  • HTML全文浏览量:  0
  • PDF下载量:  681
  • 被引次数: 0
出版历程
  • 刊出日期:  2016-11-19

目录

    /

    返回文章
    返回