离子阱质谱分析仪在研究气态配位化合物形成及配位平衡方面的应用

Application of Ion Trap Mass Spectrometry on Studying Thermodynamic Stability and Equilibrium of Cycled Metal Complexes

  • 摘要: 本研究利用离子阱质谱仪的碰撞诱导解离技术(collision-induced dissociation)和气态离子-分子反应(ion-molecule reaction)技术研究气态配位化合物的配位键形成,解离以及再平衡过程。实验发现,气相中配位化合物在被外来能量打断配位键后,可以捕获其它分子形成新的配位化合物,从而达到新的络合稳定平衡,并提出化学气相系统中配位新平衡的建立是基于金属配合物的热力学稳定性。实验结果表明,可以通过改变离子阱质谱仪的碰撞诱导解离过程中激发时间,研究配位化合物的热力学稳定性。

     

    Abstract: A combination of collision-induced dissociation (CID) and ion-molecule (I-M) reaction was used to study the re-equilibrium procedure which occurred in an ion trap mass spectrometer when collision-induced dissociation (CID) as the constant disturbance was imparted to an isolated metal complex. The re-equilibrium in the gas phase was found to proceed through ligand loss, gain or exchange reaction with the participation of solvent molecules: methanol and water. Semi-quantitative CID measurements depending on the activation time were carried out. The comparison among the kinetic behaviors of the cycled metal complexes reveals that the chemical re-equilibrium occurred in the gas-phase system is depended on the thermodynamic stability of metal complex. The feature of CID can be used to study the stability of metal complex in ion trap mass spectrometry by controlling the activation time.

     

/

返回文章
返回