高效液相色谱-电感耦合等离子体质谱法分析经牛黄解毒片暴露后大鼠血清中砷形态

陈绍占, 刘丽萍, 杜宏举, 金鹏飞, 周天慧

陈绍占, 刘丽萍, 杜宏举, 金鹏飞, 周天慧. 高效液相色谱-电感耦合等离子体质谱法分析经牛黄解毒片暴露后大鼠血清中砷形态[J]. 质谱学报, 2017, 38(2): 177-186. DOI: 10.7538/zpxb.2016.0089
引用本文: 陈绍占, 刘丽萍, 杜宏举, 金鹏飞, 周天慧. 高效液相色谱-电感耦合等离子体质谱法分析经牛黄解毒片暴露后大鼠血清中砷形态[J]. 质谱学报, 2017, 38(2): 177-186. DOI: 10.7538/zpxb.2016.0089
CHEN Shao-zhan, LIU Li-ping, DU Hong-ju, JIN Peng-fei, ZHOU Tian-hui. Arsenic Species in Rat Serum after Oral Administration of Niuhuang Jiedu Tablet by HPLC-ICP-MS[J]. Journal of Chinese Mass Spectrometry Society, 2017, 38(2): 177-186. DOI: 10.7538/zpxb.2016.0089
Citation: CHEN Shao-zhan, LIU Li-ping, DU Hong-ju, JIN Peng-fei, ZHOU Tian-hui. Arsenic Species in Rat Serum after Oral Administration of Niuhuang Jiedu Tablet by HPLC-ICP-MS[J]. Journal of Chinese Mass Spectrometry Society, 2017, 38(2): 177-186. DOI: 10.7538/zpxb.2016.0089
陈绍占, 刘丽萍, 杜宏举, 金鹏飞, 周天慧. 高效液相色谱-电感耦合等离子体质谱法分析经牛黄解毒片暴露后大鼠血清中砷形态[J]. 质谱学报, 2017, 38(2): 177-186. CSTR: 32365.14.zpxb.2016.0089
引用本文: 陈绍占, 刘丽萍, 杜宏举, 金鹏飞, 周天慧. 高效液相色谱-电感耦合等离子体质谱法分析经牛黄解毒片暴露后大鼠血清中砷形态[J]. 质谱学报, 2017, 38(2): 177-186. CSTR: 32365.14.zpxb.2016.0089
CHEN Shao-zhan, LIU Li-ping, DU Hong-ju, JIN Peng-fei, ZHOU Tian-hui. Arsenic Species in Rat Serum after Oral Administration of Niuhuang Jiedu Tablet by HPLC-ICP-MS[J]. Journal of Chinese Mass Spectrometry Society, 2017, 38(2): 177-186. CSTR: 32365.14.zpxb.2016.0089
Citation: CHEN Shao-zhan, LIU Li-ping, DU Hong-ju, JIN Peng-fei, ZHOU Tian-hui. Arsenic Species in Rat Serum after Oral Administration of Niuhuang Jiedu Tablet by HPLC-ICP-MS[J]. Journal of Chinese Mass Spectrometry Society, 2017, 38(2): 177-186. CSTR: 32365.14.zpxb.2016.0089

高效液相色谱-电感耦合等离子体质谱法分析经牛黄解毒片暴露后大鼠血清中砷形态

Arsenic Species in Rat Serum after Oral Administration of Niuhuang Jiedu Tablet by HPLC-ICP-MS

  • 摘要: 采用高效液相色谱-电感耦合等离子体质谱联用技术测定经牛黄解毒片暴露后大鼠血清中的砷形态。以乙腈为提取剂,采用60 ℃水浴超声提取法对血清样品进行前处理,提取液以13 000 r/min离心10 min,上清液过0.45 μm滤膜。采用Dionex IonPac AS19分析柱(250 mm×4 mm×10 μm),以20 mmol/L碳酸铵(pH 9.7)-3%甲醇溶液作为流动相,分析经牛黄解毒片暴露后大鼠血清中的砷形态。结果表明,AsB、DMA(Ⅴ)、As(Ⅲ)、MMA(Ⅴ)和As(Ⅴ)的检出限分别为0.05、0.05、0.08、0.10和0.10 μg/L;线性相关系数(R2)大于0.999;加标回收率在86.3%~109.2%之间,相对标准偏差RSD小于5%。通过对经牛黄解毒片暴露后大鼠血清中砷形态的分析发现,DMA(Ⅴ)和U1为主要的砷形态,另外含有少量的AsB和U2。该方法灵敏度高、提取效率好,实现了多种已知和未知砷形态的同时分离,可为研究牛黄解毒片在大鼠血液中的代谢提供技术支持。
    Abstract: The preliminary study of arsenic species in rat serum after oral administration of Niuhuang Jiedu tablet was established by high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). With acetonitrile as extraction agent, water bath ultrasonic extraction at 60 ℃ was used as the pretreatment of serum samples. The extracting solution was separated by centrifugation at 13 000 r/min for 10 min, then filtered through 0.45 μm membrane. 20 mmol/L (NH4)2CO3 (pH 9.7) and 3% methanol were used as mobile phase, and Dionex IonPac AS19 (250 mm×4 mm×10 μm) was used as analytical column for analysis of arsenic species in rat serum after oral administration of Niuhuang Jiedu tablet. Experimental results show that the detection limits of AsB, DMA(Ⅴ), As(Ⅲ), MMA(Ⅴ) and As(Ⅴ) are 0.05, 0.05, 0.08, 0.10 and 0.10 μg/L, respectively. The linear coefficients (R2) are more than 0.999, the recoveries are between 86.3% and 109.2% with the relative standard deviation less than 5%. The preliminary study found that DMA(Ⅴ) and U1 are the main arsenic species in rat serum after oral administration of Niuhuang Jiedu tablet, and a small amount of AsB and U2 are also detected in rat serum. The method is sensitive and high extraction efficiency, which can realize the simultaneous separation of various known and unknown arsenic forms, and provide technical support for the metabolic study of arsenic in rat blood.
  •   2574

  • [1] 国家药典委员会. 中华人民共和国药典(一部)[M]. 北京:化学工业出版社,2005:387.
    [2] 铁步荣,乔旺忠,马忠明,等. 人服用含雄黄中成药后尿中砷含量的动态研究[J]. 中国中药杂志,1992,17(5):285-288.TIE Burong, QIAO Wangzhong, MA Zhongming, et al. Dynamic investigation of the arsenic content in the urine after taking containing realgar proprietary Chinese medicine[J]. China Journal of Chinese Materia Medica, 1992, 17(5): 285-288(in Chinese).
    [3] KOCH I, SYLVESTER S, LAI W M, et al. Bioaccessibility and excretion of arsenic in Niu Huang Jie Du Pian pills[J]. Toxicology and Applied Pharmacology, 2007, 222(3): 357-364.
    [4] ATSDR B. Toxicological profile for Arsenic (update). U.S. department of health and human services[C]. Public Health Service, Atlanta, GA. 2007.
    [5] CORNELIS R, CARUSO J A, CREWS H, et al. Handbook of elemental speciation[M]. Handbook of Elemental Speciation II-Species in the Environment, Food, Medicine and Occupational Health, 2005: 94-106.
    [6] ZHENG J, KOSMUS W, PICHLER-SEMMELROCK F, et al. Arsenic speciation in human urine reference materials using high-performance liquid chromatography with inductively coupled plasma mass spectrometric detection[J]. Journal of Trace Elements in Medicine and Biology, 1999, 13(3): 150-156.
    [7] SHRAIM A, XING C, SONG L, et al. Arsenic speciation in the urine and hair of individuals exposed to airborne arsenic through coal-burning in Guizhou, PR China[J]. Toxicology Letters, 2003, 137(1/2): 35-48.
    [8] SOLEO L, LOVREGLIO P, IAVICOLI S, et al. Significance of urinary arsenic speciation in assessment of seafood ingestion as the main source of organic and inorganic arsenic in a population resident near a coastal area[J]. Chemosphere, 2008, 73(73): 291-299.
    [9] BRIMA E I, HARIS P I, JENKINS R O, et al. Understanding arsenic metabolism through a comparative study of arsenic levels in the urine, hair and fingernails of healthy volunteers from three unexposed ethnic groups in the United Kingdom[J]. Toxicology and Applied Pharmacology, 2006, 216(1): 122-130.
    [10] CHEN B, HU B, HE M, et al. Synthesis of mixed coating with multi-functional groups for in-tube hollow fiber solid phase microextraction-high performance liquid chromatography-inductively coupled plasma mass spectrometry speciation of arsenic in human urine[J]. Journal of Chromatography A, 2012, 1 227(5): 19-28.
    [11] TODOROV T I, EJNIK J W, MULLICK F G, et al. Arsenic speciation in urine and blood reference materials[J]. Microchimica Acta, 2005, 151(3/4): 263-268.
    [12] HALL M, GAMBLE M, SLAVKOVICH V, et al. Determinants of Arsenic metabolism: blood arsenic metabolites,plasma folate,cobalamin,and homocysteine concentrations in maternal-newborn pairs[J]. Environmental Health Perspectives, 2007, (10): 1503-1509.
    [13] ITO K, GOESSLER W, WELS B, et al. An interlaboratory study of arsenic speciation analysis of whole blood[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(9): 1740-1745.
    [14] ZHANG X, CORNELIS R, KIMPE J D, et al. Arsenic speciation in serum of uraemic patients based on liquid chromatography with hydride generation atomic absorption spectrometry and on-line UV photo-oxidation digestion[J]. Analytica Chimica Acta, 1996, 319(1/2): 177-185.
    [15] YAMAUCHI H, TAKAHASHI K, MASHIKO M, et al. Intake of different chemical species of dietary arsenic by the Japanese, and their blood and urinary arsenic levels[J]. Applied Organometallic Chemistry, 1992, 6(4): 383-388.
    [16] YOSHINO Y, YUAN B, MIYASHITA S I, et al. Speciation of arsenic trioxide metabolites in blood cells and plasma of a patient with acute promyelocytic leukemia[J]. Analytical and Bioanalytical Chemistry, 2008, 393(2): 689-697.
    [17] MANDAL B K, OGRA Y, ANZAI K, et al. Speciation of arsenic in biological samples[J]. Toxicology and Applied Pharmacology, 2004, 198(3): 307-318.
    [18] GAMBLE M V, LIU X, SLAVKOVICH V, et al. Folic acid supplementation lowers blood arsenic[J]. American Journal of Clinical Nutrition, 2007, 86(4): 1202-1209.
    [19] PI J, YAMAUCHI H, KUMAGAI Y, et al. Evidence for induction of oxidative stress caused by chronic exposure of chinese residents to Arsenic contained in drinking water[J]. Environmental Health Perspectives, 2002, 110(4): 331-336.
    [20] WU M M, CHIOU H Y, WANG T W, et al. Association of blood arsenic levels with increased reactive oxidants and decreased antioxidant capacity in a human population of northeastern Taiwan[J]. Environmental Health Perspectives, 2001, 109(10): 1011-1017.
    [21] ALLAIN P, JAUNAULT L, MAURAS Y, et al. Signal enhancement of elements due to the presence of carbon-containing compounds in inductively coupled plasma mass spectrometry[J]. Analytical Chemistry, 1991, 63(14): 1497-1498.
    [22] LARSEN E H, STÜRUP S. Carbon-enhanced inductively coupled plasma mass spectrometric detection of arsenic and selenium and its application to arsenic speciation[J]. Journal of Analytical Atomic Spectrometry, 1994, 9(10): 1099-1105.
    [23] HU Z, HU S, GAO S, et al. Volatile organic solvent-induced signal enhancements in inductively coupled plasma-mass spectrometry: a case study of methanol and acetone[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2004, 59(9): 1463-1470.
    [24] JACKSON B P, BERTSCH P M. Determination of arsenic speciation in poultry wastes by IC-ICP-MS[J]. Environmental Science and Technology, 2001, 35(24): 4868-4873.
    [25] WANG P, ZHAO G, JING T. High performance liquid chromatography inductively coupled plasma mass spectrometry based method for the determination of organic arsenic feed additives and speciation of anionic arsenics in animal feed[J]. Journal of Agricultural and Food Chemistry, 2010, 58(9): 5263-5270.
    [26] 陈绍占,杜振霞,刘丽萍,等. 高效液相色谱-电感耦合等离子质谱法分析雄黄在大鼠脏器中代谢的砷形态[J]. 分析化学,2014,42(3):349-354.CHEN Shaozhan, DU Zhenxia, LIU Liping, et al. Analysis of arsenic metabolites of realgar in rat viscera by HPLC-ICP-MS[J]. Chinese Journal of Analytical Chemistry, 2014, 42(3): 349-354(in Chinese).
    [27] ZHANG Y, QIANG S, JING S, et al. Liquid chromatography-hydride generation-atomic fluorescence spectrometry determination of arsenic species in dog plasma and its application to a pharmacokinetic study after oral administration of Realgar and Niu Huang Jie Du Pian[J]. Journal of Chromatography B, 2013, 917-918(5): 93-99.
图(1)
计量
  • 文章访问数:  826
  • HTML全文浏览量:  0
  • PDF下载量:  832
  • 被引次数: 0
出版历程
  • 刊出日期:  2017-03-19

目录

    /

    返回文章
    返回