聚丙烯腈纤维热稳定化过程的光电离质谱研究

王毓, 袁晓红, 沈志刚, 许中强, 李亚敏, 潘洋

王毓, 袁晓红, 沈志刚, 许中强, 李亚敏, 潘洋. 聚丙烯腈纤维热稳定化过程的光电离质谱研究[J]. 质谱学报, 2018, 39(2): 158-170. DOI: 10.7538/zpxb.2017.0040
引用本文: 王毓, 袁晓红, 沈志刚, 许中强, 李亚敏, 潘洋. 聚丙烯腈纤维热稳定化过程的光电离质谱研究[J]. 质谱学报, 2018, 39(2): 158-170. DOI: 10.7538/zpxb.2017.0040
WANG Yu, YUAN Xiao-hong, SHEN Zhi-gang, XU Zhong-qiang, LI Ya-min, PAN Yang. Study of Thermal Stabilization Process of Polyacrylonitrile Fiber with Photoionization Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(2): 158-170. DOI: 10.7538/zpxb.2017.0040
Citation: WANG Yu, YUAN Xiao-hong, SHEN Zhi-gang, XU Zhong-qiang, LI Ya-min, PAN Yang. Study of Thermal Stabilization Process of Polyacrylonitrile Fiber with Photoionization Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(2): 158-170. DOI: 10.7538/zpxb.2017.0040
王毓, 袁晓红, 沈志刚, 许中强, 李亚敏, 潘洋. 聚丙烯腈纤维热稳定化过程的光电离质谱研究[J]. 质谱学报, 2018, 39(2): 158-170. CSTR: 32365.14.zpxb.2017.0040
引用本文: 王毓, 袁晓红, 沈志刚, 许中强, 李亚敏, 潘洋. 聚丙烯腈纤维热稳定化过程的光电离质谱研究[J]. 质谱学报, 2018, 39(2): 158-170. CSTR: 32365.14.zpxb.2017.0040
WANG Yu, YUAN Xiao-hong, SHEN Zhi-gang, XU Zhong-qiang, LI Ya-min, PAN Yang. Study of Thermal Stabilization Process of Polyacrylonitrile Fiber with Photoionization Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(2): 158-170. CSTR: 32365.14.zpxb.2017.0040
Citation: WANG Yu, YUAN Xiao-hong, SHEN Zhi-gang, XU Zhong-qiang, LI Ya-min, PAN Yang. Study of Thermal Stabilization Process of Polyacrylonitrile Fiber with Photoionization Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(2): 158-170. CSTR: 32365.14.zpxb.2017.0040

聚丙烯腈纤维热稳定化过程的光电离质谱研究

Study of Thermal Stabilization Process of Polyacrylonitrile Fiber with Photoionization Mass Spectrometry

  • 摘要: 利用热解-单光子电离飞行时间质谱(Py-SPI-TOF MS)和热重-质谱(TG-MS)联用仪研究了聚丙烯腈(PAN)原丝在氮气和空气两种气氛下的热稳定化过程。结果表明,PAN原丝在发生热失重之前便已形成部分环化结构,随着温度的升高,PAN原丝在氮气气氛下呈现出2个热分解阶段:第1阶段为线型分子链的断裂以及含氮小分子的脱除,主要生成HCN、NH3、丙烯腈单体、二聚体以及三聚体等热解产物;第2阶段为环化结构的热裂解,伴随着较多成环化合物和轻质烯烃的产生。而在空气气氛中,氧化作用有利于环化结构的形成和稳定,明显抑制了第2阶段的热分解。此外,较慢的升温速率也有助于环化结构的形成。依据光电离质谱实时在线的研究结果,证明了氧气和温控条件在PAN原丝热稳定化过程中具有关键性作用。
    Abstract: Carbon fibers are excellent materials with light weight and high mechanical strength, and have already been widely used in the automotive industries, sports apparatus and the field of aerospace. Polyacrylonitrile (PAN) precursor fiber is one of the most popular raw materials for the production of high performance carbon fibers. Generally, the manufacturing process of PAN based carbon fibers consists of three main steps: peroxidation, carbonization and graphitization. Among these, peroxidation is the most complex and time-consuming step, which has a great influence on the final properties of carbon fibers. In this work, the thermal stabilization processes of PAN precursor fiber in both nitrogen and air atmosphere were studied using pyrolysis single photoionization time-of-flight mass spectrometry (Py-SPI-TOF MS) and thermogravimetry-mass spectrometry (TG-MS). TG-MS was used to identify different decomposition stages of PAN precursor fiber and to evaluate the evolved gases simultaneously. As to the products with relatively higher molecular weight (ionization energy 10.6 eV), Py-SPI-MS was applied to analysis. Thanks to the “soft” near-threshold photoionization character of SPI-TOF MS, few or even no fragments of molecular ions can be formed in the ionization process. This makes the identification and interpretation of complex decomposition products in real time possible. The mass spectra of decomposition products at isothermal temperatures and temperature-evolved profiles of selected species during the thermal stabilization processes were measured. The experimental results indicate that cyclization structures were formed without loss of any material. As to the thermal decomposition of PAN in nitrogen atmosphere, two evident thermal decomposition stages were observed as the heating temperature increased. The first stage can be attributed to the acrylonitrile (AN) chain scissions and liberation of nitrogen-containing gases, during which HCN, NH3, AN monomers, dimers and trimers were generated. The decomposition of the unstable cyclization structures took place in the second stage, mainly producing cyclization compounds and light olefins. However, in air atmosphere, oxygen accelerated the formation and stabilization of the cyclization structures. Such a process suppressed further decomposition of the cyclization structures to a great extent. Moreover, in order to study the effects of thermal stabilization temperature, thermal decomposition processes of PAN precursor fibers under different heating rates were performed. The results indicated that the formation of cyclization structures prefers lower heating rates. These findings obtained with Py-SPI-TOF MS in real time prove that both oxygen and temperature condition play important roles in thermal stabilization processes of PAN fibers. Nevertheless, the application of Py-SPI-TOF MS is still limited since it cannot be used to detect compounds with ionization energy over 10.6 eV. Therefore, future works on the study of thermal stabilization of PAN fibers can be made with synchrotron radiation SPI-TOF MS, ionization source of which has a broad photon-energy range.
  •   2672

  • [1] JAIN M K, BALASUBRAMANIAN M, DESAI P, et al. Conversion of acrylonitrile-based precursors to carbon-fibers 2 precursor morphology and thermooxidative stabilization[J]. Journal of Materials Science, 1987, 22(1): 301-312.
    [2] RAHAMAN M S A, ISMAIL A F, MUSTAFA A. A review of heat treatment on polyacrylonitrile fiber[J]. Polymer Degradation & Stability, 2007, 92(8): 1421-1432.
    [3] WATT W. Pyrolysis of polyacrylonitrile[J]. Nature, 1969, 222(5 190): 265-266.
    [4] BELL F A, LEHRLE R S, ROBB J C. Polyacrylonitrile degradation kinetics studied by the micropyrolysis g.l.c.technique[J]. Polymer, 1971, 12(9): 579-599.
    [5] WATT W. Nitrogen evolution during the pyrolysis of polyacrylonitrile[J]. Nature Physical Science, 1972, 236(62): 10-11.
    [6] USAMI T, ITOH T, OHTANI H, et al. Structural study of polyacrylonitrile fibers during oxidative thermal-degradation by pyrolysis-gas chromatography, solid-state C-13 nuclear-magnetic-resonance, and fourier-transform infrared-spectroscopy[J]. Macromolecules, 1990, 23(9): 2460-2465.
    [7] CHATTERJEE N, BASU S, PALIT S K, et al. An XRD characterization of the thermal degradation of polyacrylonitrile[J]. Journal of Polymer Science Part B Polymer Physics, 1995, 33(12): 1705-1712.
    [8] GUPTA A K, PALIWAL D K, BAJAJ P. Effect of an acidic comonomer on thermooxidative stabilization of polyacrylonitrile[J]. Journal of Applied Polymer Science, 2010, 58(7): 1161-1174.
    [9] NIELSEN M, JURASEK P, HAYASHI J, et al. Formation of toxic gases during pyrolysis of polyacrylonitrile and nylons[J]. Journal of Analytical & Applied Pyrolysis, 1995, 35(1): 43-51.
    [10] GUPTA A, HARRISON I R. New aspects in the oxidative stabilization of PAN-based carbon fibers: Ⅱ[J]. Carbon, 1996, 34(11): 1427-1445.
    [11] XUE T J, MCKINNEY M A, WILKIE C A. The thermal degradation of polyacrylonitrile[J]. Polymer Degradation & Stability, 1997, 58(s1/2):193-202.
    [12] HOUTZ R C. “Orlon” acrylic fiber: chemistry and properties[J]. Textile Research Journal, 1950, 20(11): 786-801.
    [13] GRASSIE N, HAY J N, MCNEILL I C. Coloration in acrylonitrile and methacrylonitrile polymers[J]. Journal of Polymer Science, 1958, 31(122): 205-206.
    [14] PEEBLES L H J, BRANDRUP J. A chemical means of distinguishing between conjugated, and conjugated, bonds[J]. Die Makromolekulare Chemie, 2003, 98(1): 189-203.
    [15] WATT W, JOHNSON W. Mechanism of oxidisation of polyacrylonitrile fibres[J]. Nature, 1975, 257(5 523): 210-212.
    [16] FITZER E, MÜLLER D J. The influence of oxygen on the chemical reactions during stabilization of pan as carbon fiber precursor[J]. Carbon, 1975, 13(1): 63-69.
    [17] 陈厚,王成国,崔传生,等. 丙烯腈共聚物低温热解反应动力学[J]. 高分子材料科学与工程,2004,20(4):181-183.CHEN Hou, WANG Chengguo, CUI Chuansheng, et al. Study of the degradation kinetics of copolymers of acrylonitrile[J]. Polymer Materials Science & Engineering, 2004, 20(4): 181-183(in Chinese).
    [18] SUN T, HOU Y, WANG H. Mass DSC/TG and IR ascertained structure and color change of polyacrylonitrile fibers in air/nitrogen during thermal stabilization[J]. Journal of Applied Polymer Science, 2010, 118(1): 462-468.
    [19] ZHAO J, ZHANG J, ZHOU T, et al. New understanding on the reaction pathways of the polyacrylonitrile copolymer fiber pre-oxidation: online tracking by two-dimensional correlation FTIR spectroscopy[J]. RSC Advances, 2016, 6(6): 4397-4409.
    [20] MARTIN S C, LIGGAT J J, SNAPE C E. In situ NMR investigation into the thermal degradation and stabilisation of PAN[J]. Polymer Degradation & Stability, 2001, 74(3): 407-412.
    [21] MINAGAWA M, ONUMA H, OGITA T, et al. Pyrolysis gas chromatographic analysis of polyacrylonitrile[J]. Journal of Applied Polymer Science, 2015, 79(3): 473-478.
    [22] SURIANARAYANAN M, UCHIDA T, WAKAKURA M. Evolved gases by simultaneous TG-MS technique and associated thermal hazard in drying of polyacrylonitrile[J]. Journal of Loss Prevention in the Process Industries, 1998, 11(2): 99-108.
    [23] GULCAN O, JALE H, AHMET M O. Pyrolysis mass spectrometry analysis of electrochemically grafted polyacrylonitrile with thiophene[J]. Journal of Macromolecular Science Part A, 2005, 42(10): 1387-1397.
    [24] JIN R. TG-FTIR study of degradation mechanism and pyrolysis products of high molecular polyacrylonitrile with different oxidation degree[J]. Asian Journal of Chemistry, 2013, 25(15): 8797-8802.
    [25] JIA L, BRECH Y L, MAUVIEL G, et al. Online analysis of biomass pyrolysis tar by photoionization mass spectrometry[J]. Energy & Fuels, 2016, 30(3): 1555-1563.
    [26] ZHU Y, CHEN X, WANG Y, et al. Online study on the catalytic pyrolysis of bituminous coal over HUSY and HZSM-5 with photoionization time-of-flight mass spectrometry[J]. Energy & Fuels, 2016, 30(3): 1598-1604.
    [27] YU W, QUE H, ZHOU Z, et al. Online study on the pyrolysis of polypropylene over the HZSM-5 zeolite with photoionization time-of-flight mass spectrometry[J]. Energy & Fuels, 2015, 29(2): 1090-1098.
    [28] SURIANARAYANAN M, VIJAYARAGHAVAN R, RAGHAVAN K V. Spectroscopic investigations of polyacrylonitrile thermal degradation[J]. Journal of Polymer Science Part A Polymer Chemistry, 2015, 36(14): 2503-2512.
    [29] PETERSON J D, SERGEY VYAZOVKIN A, WIGHT C A. Kinetic study of stabilizing effect of oxygen on thermal degradation of poly(methyl methacrylate)[J]. Macromolecular Rapid Communications, 1999, 20(9): 480-483.
    [30] GOLEBIEWSKI J, GALESKI A. Thermal stability of nanoclay polypropylene composites by simultaneous DSC and TGA[J]. Composites Science & Technology, 2007, 67(15): 3442-3447.
图(1)
计量
  • 文章访问数:  475
  • HTML全文浏览量:  0
  • PDF下载量:  682
  • 被引次数: 0
出版历程
  • 刊出日期:  2018-03-19

目录

    /

    返回文章
    返回