[1] |
JAIN M K, BALASUBRAMANIAN M, DESAI P, et al. Conversion of acrylonitrile-based precursors to carbon-fibers 2 precursor morphology and thermooxidative stabilization[J]. Journal of Materials Science, 1987, 22(1): 301-312.
|
[2] |
RAHAMAN M S A, ISMAIL A F, MUSTAFA A. A review of heat treatment on polyacrylonitrile fiber[J]. Polymer Degradation & Stability, 2007, 92(8): 1421-1432.
|
[3] |
WATT W. Pyrolysis of polyacrylonitrile[J]. Nature, 1969, 222(5 190): 265-266.
|
[4] |
BELL F A, LEHRLE R S, ROBB J C. Polyacrylonitrile degradation kinetics studied by the micropyrolysis g.l.c.technique[J]. Polymer, 1971, 12(9): 579-599.
|
[5] |
WATT W. Nitrogen evolution during the pyrolysis of polyacrylonitrile[J]. Nature Physical Science, 1972, 236(62): 10-11.
|
[6] |
USAMI T, ITOH T, OHTANI H, et al. Structural study of polyacrylonitrile fibers during oxidative thermal-degradation by pyrolysis-gas chromatography, solid-state C-13 nuclear-magnetic-resonance, and fourier-transform infrared-spectroscopy[J]. Macromolecules, 1990, 23(9): 2460-2465.
|
[7] |
CHATTERJEE N, BASU S, PALIT S K, et al. An XRD characterization of the thermal degradation of polyacrylonitrile[J]. Journal of Polymer Science Part B Polymer Physics, 1995, 33(12): 1705-1712.
|
[8] |
GUPTA A K, PALIWAL D K, BAJAJ P. Effect of an acidic comonomer on thermooxidative stabilization of polyacrylonitrile[J]. Journal of Applied Polymer Science, 2010, 58(7): 1161-1174.
|
[9] |
NIELSEN M, JURASEK P, HAYASHI J, et al. Formation of toxic gases during pyrolysis of polyacrylonitrile and nylons[J]. Journal of Analytical & Applied Pyrolysis, 1995, 35(1): 43-51.
|
[10] |
GUPTA A, HARRISON I R. New aspects in the oxidative stabilization of PAN-based carbon fibers: Ⅱ[J]. Carbon, 1996, 34(11): 1427-1445.
|
[11] |
XUE T J, MCKINNEY M A, WILKIE C A. The thermal degradation of polyacrylonitrile[J]. Polymer Degradation & Stability, 1997, 58(s1/2):193-202.
|
[12] |
HOUTZ R C. “Orlon” acrylic fiber: chemistry and properties[J]. Textile Research Journal, 1950, 20(11): 786-801.
|
[13] |
GRASSIE N, HAY J N, MCNEILL I C. Coloration in acrylonitrile and methacrylonitrile polymers[J]. Journal of Polymer Science, 1958, 31(122): 205-206.
|
[14] |
PEEBLES L H J, BRANDRUP J. A chemical means of distinguishing between conjugated, and conjugated, bonds[J]. Die Makromolekulare Chemie, 2003, 98(1): 189-203.
|
[15] |
WATT W, JOHNSON W. Mechanism of oxidisation of polyacrylonitrile fibres[J]. Nature, 1975, 257(5 523): 210-212.
|
[16] |
FITZER E, MÜLLER D J. The influence of oxygen on the chemical reactions during stabilization of pan as carbon fiber precursor[J]. Carbon, 1975, 13(1): 63-69.
|
[17] |
陈厚,王成国,崔传生,等. 丙烯腈共聚物低温热解反应动力学[J]. 高分子材料科学与工程,2004,20(4):181-183.CHEN Hou, WANG Chengguo, CUI Chuansheng, et al. Study of the degradation kinetics of copolymers of acrylonitrile[J]. Polymer Materials Science & Engineering, 2004, 20(4): 181-183(in Chinese).
|
[18] |
SUN T, HOU Y, WANG H. Mass DSC/TG and IR ascertained structure and color change of polyacrylonitrile fibers in air/nitrogen during thermal stabilization[J]. Journal of Applied Polymer Science, 2010, 118(1): 462-468.
|
[19] |
ZHAO J, ZHANG J, ZHOU T, et al. New understanding on the reaction pathways of the polyacrylonitrile copolymer fiber pre-oxidation: online tracking by two-dimensional correlation FTIR spectroscopy[J]. RSC Advances, 2016, 6(6): 4397-4409.
|
[20] |
MARTIN S C, LIGGAT J J, SNAPE C E. In situ NMR investigation into the thermal degradation and stabilisation of PAN[J]. Polymer Degradation & Stability, 2001, 74(3): 407-412.
|
[21] |
MINAGAWA M, ONUMA H, OGITA T, et al. Pyrolysis gas chromatographic analysis of polyacrylonitrile[J]. Journal of Applied Polymer Science, 2015, 79(3): 473-478.
|
[22] |
SURIANARAYANAN M, UCHIDA T, WAKAKURA M. Evolved gases by simultaneous TG-MS technique and associated thermal hazard in drying of polyacrylonitrile[J]. Journal of Loss Prevention in the Process Industries, 1998, 11(2): 99-108.
|
[23] |
GULCAN O, JALE H, AHMET M O. Pyrolysis mass spectrometry analysis of electrochemically grafted polyacrylonitrile with thiophene[J]. Journal of Macromolecular Science Part A, 2005, 42(10): 1387-1397.
|
[24] |
JIN R. TG-FTIR study of degradation mechanism and pyrolysis products of high molecular polyacrylonitrile with different oxidation degree[J]. Asian Journal of Chemistry, 2013, 25(15): 8797-8802.
|
[25] |
JIA L, BRECH Y L, MAUVIEL G, et al. Online analysis of biomass pyrolysis tar by photoionization mass spectrometry[J]. Energy & Fuels, 2016, 30(3): 1555-1563.
|
[26] |
ZHU Y, CHEN X, WANG Y, et al. Online study on the catalytic pyrolysis of bituminous coal over HUSY and HZSM-5 with photoionization time-of-flight mass spectrometry[J]. Energy & Fuels, 2016, 30(3): 1598-1604.
|
[27] |
YU W, QUE H, ZHOU Z, et al. Online study on the pyrolysis of polypropylene over the HZSM-5 zeolite with photoionization time-of-flight mass spectrometry[J]. Energy & Fuels, 2015, 29(2): 1090-1098.
|
[28] |
SURIANARAYANAN M, VIJAYARAGHAVAN R, RAGHAVAN K V. Spectroscopic investigations of polyacrylonitrile thermal degradation[J]. Journal of Polymer Science Part A Polymer Chemistry, 2015, 36(14): 2503-2512.
|
[29] |
PETERSON J D, SERGEY VYAZOVKIN A, WIGHT C A. Kinetic study of stabilizing effect of oxygen on thermal degradation of poly(methyl methacrylate)[J]. Macromolecular Rapid Communications, 1999, 20(9): 480-483.
|
[30] |
GOLEBIEWSKI J, GALESKI A. Thermal stability of nanoclay polypropylene composites by simultaneous DSC and TGA[J]. Composites Science & Technology, 2007, 67(15): 3442-3447.
|