电感耦合等离子体质谱法测定铁矿石中的痕量钼元素

徐进力, 邢夏, 刘彬, 陈海杰, 白金峰, 张勤

徐进力, 邢夏, 刘彬, 陈海杰, 白金峰, 张勤. 电感耦合等离子体质谱法测定铁矿石中的痕量钼元素[J]. 质谱学报, 2018, 39(2): 240-249. DOI: 10.7538/zpxb.2017.0051
引用本文: 徐进力, 邢夏, 刘彬, 陈海杰, 白金峰, 张勤. 电感耦合等离子体质谱法测定铁矿石中的痕量钼元素[J]. 质谱学报, 2018, 39(2): 240-249. DOI: 10.7538/zpxb.2017.0051
XU Jin-li, XING Xia, LIU Bin, CHEN Hai-jie, BAI Jin-feng, ZHANG Qin. Determination of Trace Element Molybdenum in Iron Ore by Inductively Coupled Plasma Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(2): 240-249. DOI: 10.7538/zpxb.2017.0051
Citation: XU Jin-li, XING Xia, LIU Bin, CHEN Hai-jie, BAI Jin-feng, ZHANG Qin. Determination of Trace Element Molybdenum in Iron Ore by Inductively Coupled Plasma Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(2): 240-249. DOI: 10.7538/zpxb.2017.0051
徐进力, 邢夏, 刘彬, 陈海杰, 白金峰, 张勤. 电感耦合等离子体质谱法测定铁矿石中的痕量钼元素[J]. 质谱学报, 2018, 39(2): 240-249. CSTR: 32365.14.zpxb.2017.0051
引用本文: 徐进力, 邢夏, 刘彬, 陈海杰, 白金峰, 张勤. 电感耦合等离子体质谱法测定铁矿石中的痕量钼元素[J]. 质谱学报, 2018, 39(2): 240-249. CSTR: 32365.14.zpxb.2017.0051
XU Jin-li, XING Xia, LIU Bin, CHEN Hai-jie, BAI Jin-feng, ZHANG Qin. Determination of Trace Element Molybdenum in Iron Ore by Inductively Coupled Plasma Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(2): 240-249. CSTR: 32365.14.zpxb.2017.0051
Citation: XU Jin-li, XING Xia, LIU Bin, CHEN Hai-jie, BAI Jin-feng, ZHANG Qin. Determination of Trace Element Molybdenum in Iron Ore by Inductively Coupled Plasma Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(2): 240-249. CSTR: 32365.14.zpxb.2017.0051

电感耦合等离子体质谱法测定铁矿石中的痕量钼元素

Determination of Trace Element Molybdenum in Iron Ore by Inductively Coupled Plasma Mass Spectrometry

  • 摘要: 国家一级铁矿石标准物质中定值元素的量较少,在多元素测定过程中缺乏有效的监控手段,这在一定程度上限制了铁矿石中可测定的元素种类,不能为现代勘查地球化学提供科学的数据支撑,制约了勘查地球化学的发展。本工作采用电感耦合等离子体质谱法(ICP-MS)测定铁矿石中的Mo,并对仪器条件进行了优化。实验发现,Mo元素受到的干扰主要来源于元素Zr的同质异位素和元素Fe的多原子离子干扰,不同质量数的Mo受到的干扰程度不同,其中95Mo受到的干扰最小,因此选择95Mo作为测定Mo的最佳同位素。在优化的仪器条件下,Mo的检出限为0.014 μg/g,当样品溶液稀释倍数达到1 000时,基体效应可降至最小,且样品的回收率在91%~117%之间,方法精密度为2.06%~5.01%。该方法准确可靠,能够为勘查地球化学提供有效的数据支撑。
    Abstract: The amount of the value elements in the national standard iron ore reference material is small, and there is no effective means of monitoring for determination of other elements, which limits the determination of the elements in iron ore to a certain extent. In this case, effective scientific data couldn’t be provided to support modern exploration geochemistry, which restricts the development of prospecting geochemistry. In this study, the method of determining molybdenum by inductively coupled plasma-mass spectrometry (ICP-MS) was established, and the optimum instrument conditions was investigated. At the same time, it was found that the interference of molybdenum mainly came from the elements of zirconium and iron. The interference degree was different for the different mass molybdenum, so the element of 95Mo which has the least interference was chosen as the measurement element. The detection limit of molybdenum was 0.014 μg/g, the recovery rate of the samples was 91%-117%, the precision of the method was 2.06%-5.01%. The method is accurate and reliable, it can provide effective data support for exploration geochemistry.
  •   2680

  • [1] 闵红,任丽萍,秦晔琼,等. 铁矿石中全铁含量分析的研究进展[J]. 冶金分析,2014,34(4):21-26.MIN Hong, REN Liping, QIN Yeqiong, et al. Research progress of total iron analysis in iron ore[J]. Metallurgical Analysis, 2014, 34(4): 21-26(in Chinese).
    [2] 喻东. XRF分析技术在铁矿石品质检测中的应用研究[D]. 成都:成都理工大学,2010.
    [3] 袁圣华. 全铁的测定-重铬酸钾容量法探讨[J]. 安徽地质,2010,20(1):56-57,73.YUAN Shenghua. Assaying of total iron:Discussion of potassium dichromate volumetry[J]. Geology of Anhui, 2010, 20(1) : 56-57, 73(in Chinese).
    [4] 戚淑芳,张杰,王莹,等. 以抗坏血酸作还原滴定剂电位滴定法测定铁矿石中全铁[J]. 冶金分析,2011,31(5):63-66.QI Shufang, ZHANG Jie, WANG Ying, et al. Determination of total iron in iron ore by potentiometric titration with ascorbic acid as reducing titrant[J]. Metallurgical Analysis, 2011, 31(5): 63-66(in Chinese).
    [5] 张莉娟,徐铁民,李小莉,等. X射线荧光光谱法测定富含硫砷钒铁矿石中的主次量元素[J]. 岩矿测试,2011,30(6):772-776.ZHANG Lijuan, XU Tiemin, LI Xiaoli, et al. Quantification of major and minor components in iron ores with sulfur, arsenic and vanadium by X-ray fluorescence spectrometry[J]. Rock and Mineral Analysis, 2011, 30(6): 772-776(in Chinese).
    [6] 陈美芳,黄光明,江冶,等. X射线荧光光谱分析在我国铁矿石分析中的应用[J]. 地质学刊,2012,36(2):206-211.CHEN Meifang, HUANG Guangming, JIANG Ye, et al. Application of X-ray fluorescence in analysis of iron ore in China[J]. Journal of Geology, 2012, 36(2): 206-211(in Chinese).
    [7] 刘洪涛,邵常丽. 能量色散X射线荧光光谱法测定铁矿石中化学成分[J]. 冶金分析,2016,36(6):69-72. LIU Hongtao, SHAO Changli. Determination of chemical components in iron ores by energy dispersive X-ray fluorescence spectrometry[J].Metallurgical Analysis, 2016, 36(6): 69-72(in Chinese).
    [8] TSUJI K, HIROKAWA K. Nondestructive depth profiling of oxidized Fe-Cr alloy by the glancing-incidence and take off X-ray fluorescence method[J]. Applied Surface Science, 1996, 103(4): 451-458.
    [9] 陈贺海,荣德福,付冉冉,等. 微波消解-电感耦合等离子体质谱法测定铁矿石中15 个稀土元素[J]. 岩矿测试,2013,32(5):702-708.CHEN Hehai, RONG Defu, FU Ranran, et al. Determination of fifteen rare-earth elements in iron ores using inductively coupled plasma mass spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2013, 32(5): 702-708(in Chinese).
    [10] 陈贺海,鲍惠君,付冉冉,等. 微波消解-电感耦合等离子体质谱法测定铁矿石中铬砷镉汞铅[J]. 岩矿测试,2012,31(2):234-240.CHEN Hehai, BAO Huijun, FU Ranran, et al. Determination of Cr,As,Cd,Hg and Pb in iron ores using inductively coupled plasma-mass spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2012, 31(2): 234-240(in Chinese).
    [11] 陈宗宏,孙明星,楚民生. 微波消解等离子体发射光谱法测定铁矿石中14种元素的研究[J]. 化学世界,2006,(7):401-413.CHEN Zonghong, SUN Mingxing, CHU Minsheng, et al. ICP-AES determination of 14 elements in iron-ores using microwave-assisted digestion[J]. Chemical World, 2006, (7): 401-413(in Chinese).
    [12] 黄北川,温良. ICP-AES测定铁矿石样品中的5种元素[J]. 广东化工,2016,43(12):246-247.HUANG Beichuan, WEN Liang. Determination of five kinds of associated elements in stibium ore by inductively coupled plasma atomic emission spectrometry[J]. Guangdong Chemical Industry, 2016, 43(12): 246-247(in Chinese).
    [13] 刘曙,罗梦竹,金樱华,等. 微波消解-化学蒸气发生-原子荧光光谱法同时测定铁矿石中的痕量砷和汞[J]. 岩矿测试,2012,31(3):456-462.LIU Shu, LUO Mengzhu, JIN Yinghua, et al. Simultaneous determination of trace As and Hg in iron ores by microwave digestion-chemical vapor generation-atomic fluorescence spectrometry[J]. Rock and Mineral Analysis, 2012, 31(3): 456-462(in Chinese).
    [14] 苏明跃,陈广志,王晶,等. 水浴消解-顺序注射-氢化物发生原子荧光光谱法测定铁矿石中砷和汞[J]. 岩矿测试,2011,30(2):210-213.SU Mingyue, CHEN Guangzhi, WANG Jing, et al. Determination of arsenic and mercury in iron ores by water-bath digestion-hydride generation-atomic fluorescence spectrometrywith a sequential injection system[J]. Rock and Mineral Analysis, 2011, 30(2): 210-213(in Chinese).
    [15] 李波,华绍广,汪洋. 氢化物发生-原子荧光法同时测定铁矿石中的砷和汞[J]. 现代矿业,2016,(6):53-58.LI Bo, HUA Shaoguang, WANG Yang. Simultaneous determination of As and Hg in iron ores by hydride generation-atomic fluorescence spectrometry[J]. Modern Mining, 2016, (6): 53-58(in Chinese).
    [16] 程志中,顾铁新,范永贵,等. 九个铁矿石标准物质研制[J]. 岩矿测试,2010,29(3):305-308.CHENG Zhizhong, GU Tiexin, FAN Yonggui, et al. Preparation of nine iron ore reference materials of GFe1-GFe9[J]. Rock and Mineral Analysis,2010, 29(3): 305-308(in Chinese).
    [17] 李颖娜,徐志彬,张志伟. 高温水解-离子色谱法测定铁矿石中氟和氯[J]. 冶金分析,2016,36(6):23-28.LI Yingna, XU Zhibin, ZHANG Zhiwei. Determination of fluorine and chorine in iron ores by pyrohydrolysision chromatography[J]. Metallurgical Analysis, 2016, 36(6): 23-28(in Chinese).
    [18] 薛静. 极谱法测定钼矿石中的总钼氧化钼硫化钼[J]. 岩矿测试,2012,31(6):989-991.XUE Jing. Determination of total molybdenum, molybdic oxide and molybdenum sulfide in molybdenum ore by polarography[J]. Rock and Mineral Analysis, 2012, 31(6): 989-991(in Chinese).
    [19] 郝志红,姚建贞,唐瑞玲,等. 交流电弧直读原子发射光谱法测定地球化学样品中银、硼、锡、钼、铅的方法研究[J]. 地质学报,2016,90(8):2070-2082.HAO Zhihong, YAO Jianzhen, TANG Ruiling, et al. Study on the method for the determination of silver, boron, tin, molybdenum, lead in geochemical samples by AC-Arc direct reading atomic emission spectroscopy[J]. Acta Geologica Sinica, 2016, 90(8): 2070-2082(in Chinese).
    [20] 赵明宇. 应用石墨炉原子吸收分光光度法检测水中钼[J]. 内蒙古科技与经济,2011,(9):97-98.ZHAO Mingyu. Determination of molybdenum in water by graphite furnace atomic absorption spectrophotometry[J]. Inner Mongolia Science Technology & Economy, 2011, (9): 97-98(in Chinese).
    [21] 刘芝花,宋旭东,刘平. ICP-OES法测定矿石中钼[J]. 化学工程与装备,2013,(5):184-186.LIU Zhihua, SONG Xudong, LIU Ping. Determination of molybdenum in ore by ICP-OES[J]. Chemical Engineering & Equipment, 2013, (5): 184-186(in Chinese).
    [22] 刘磊,杨艳,彭秀峰,等. 微波消解-电感耦合等离子体发射光谱法测定岩石和矿物中的钼[J]. 岩矿测试,2011,3(30):318-320.LIU Lei, YANG Yan, PENG Xiufeng, et al. Determination of molybdenum in rock and mineral samples by microwave digestion-inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2011, 3(30): 318-320(in Chinese).
    [23] 李瑞清,张孟星,杨林. 电感耦合等离子体发射光谱法(ICP-AES)测定矿石中钼[J]. 现代科学仪器,2010,(3):117-118.LI Ruiqing, ZHANG Mengxing, YANG Lin. Determination of molybdenum in ores by inductively coupled plasma atomic emission spectrometry (ICP-AES)[J]. Modern Scientific Instruments, 2010, (3): 117-118(in Chinese).
    [24] 郑民奇,于淑霞,程秀花. 钼矿石物相的快速分析[J]. 岩矿测试,2011,30(1):40-42.ZHENG Minqi, YU Shuxia, CHENG Xiuhua. A rapid phase analysis method for molybdenum ores[J]. Rock and Mineral Analysis, 2011, 30(1): 40-42(in Chinese).
    [25] 应海,杨芃原,王小如,等. ICP-AES初级专家系统中的谱线干扰校正的研究[J]. 光谱学与光谱分析,1998,16(6):687-692.YING Hai, YANG Pengyuan, WANG Xiaoru, et al. Correction of spectral interferences by ICP-AES primary expert system[J]. Spectroscopy and Spectral Analysis, 1998, 16(6) : 687-692(in Chinese).
    [26] 赵君威,梅坛,鄢国强,等. 电感耦合等离子体原子发射光谱分析中的光谱干扰及其校正的研究进展[J]. 理化检验-化学分册,2013,49(3):364-369.ZHAO Junwei, MEI Tan, YAN Guoqiang, et al. Recent progress of researches on spectral interference and its correction in ICP-AES analysis[J]. PTCA (PartB: Chem Anal), 2013, 49(3): 364-369(in Chinese).
    [27] 陆秉源,乔培军,邵磊. 电感耦合等离子体质谱45Sc的背景原因和处理方法研究[J]. 质谱学报,2011,32(3):146-150.LU Bingyuan, QIAO Peijun, SHAO Lei. Studies on 45Sc background interference and treatment in ICP-MS[J]. Journal of Chinese Mass Spectrometry Society, 2011, 32(3) : 146-150(in Chinese).
    [28] 于兆水,孙晓玲,张勤. 电感耦合等离子体质谱法测定地球化学样品中砷的干扰校正方法[J]. 分析化学研究简报,2008,36(11):1571-1574.YU Zhaoshui, SUN Xiaoling, ZHANG Qin. Using 37Cl-16O/52Cr to correct 40Ar-35Cl interference for the analysis of arsenic in geochemical exploration samples by inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2008, 36(11): 1571-1574(in Chinese).
    [29] 李刚,曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正[J]. 岩矿测试,2008,27(3):197-200.LI Gang, CAO Xiaoyan. Interference and its elimination in determination of germanium and cadmium in geological samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2008, 27(3): 197-200(in Chinese).
    [30] 陈雪,刘烊,罗学辉,等. ICP-MS测定地质样品中24种痕量元素干扰校正研究[J]. 黄金,2013,34(4):74-77.CHEN Xue, LIU Yang, LUO Xuehui, et al. Studies on the correction of interference for 24 trace elements in geological samples by ICP-MS[J]. Gold, 2013, 34(4): 74-77(in Chinese).
    [31] 张羽旭,温汉捷,樊海峰. 地质样品中Mo同位素测定的前处理方法研究[J]. 分析化学研究报告,2009,37(2):216-220.ZHANG Yuxu, WEN Hanjie, FAN Haifeng. Chemical pretreatment methods for measurement of Mo isotope ratio on geological samples[J]. Chinese Journal of Analytical Chemistry, 2009, 37(2): 216-220(in Chinese).
    [32] 熊英,吴赫,王龙山. 电感耦合等离子体质谱法同时测定铜铅锌矿石中微量元素镓铟铊钨钼的干扰消除[J]. 岩矿测试,2011,30(1):7-11.XIONG Ying, WU He, WANG Longshan. Elimination of interference in simultaneous determination of trace Ga,In,Ta,W and Mo in copper, lead and zinc ores by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2011, 30(1): 7-11(in Chinese).
图(1)
计量
  • 文章访问数:  464
  • HTML全文浏览量:  0
  • PDF下载量:  693
  • 被引次数: 0
出版历程
  • 刊出日期:  2018-03-19

目录

    /

    返回文章
    返回