基于ICP-MS的二氧化硅亚微米粒子特征参数分析

孙传强, 龚子珊, 蒋学慧, 汪曣, 赵学玒

孙传强, 龚子珊, 蒋学慧, 汪曣, 赵学玒. 基于ICP-MS的二氧化硅亚微米粒子特征参数分析[J]. 质谱学报, 2018, 39(5): 567-572. DOI: 10.7538/zpxb.2017.0164
引用本文: 孙传强, 龚子珊, 蒋学慧, 汪曣, 赵学玒. 基于ICP-MS的二氧化硅亚微米粒子特征参数分析[J]. 质谱学报, 2018, 39(5): 567-572. DOI: 10.7538/zpxb.2017.0164
SUN Chuan-qiang, GONG Zi-shan, JIANG Xue-hui, WANG Yan, ZHAO Xue-hong. Analysis of Characteristic Parameters of Sub-micron Silicon Dioxide Particles by ICP-MS[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(5): 567-572. DOI: 10.7538/zpxb.2017.0164
Citation: SUN Chuan-qiang, GONG Zi-shan, JIANG Xue-hui, WANG Yan, ZHAO Xue-hong. Analysis of Characteristic Parameters of Sub-micron Silicon Dioxide Particles by ICP-MS[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(5): 567-572. DOI: 10.7538/zpxb.2017.0164
孙传强, 龚子珊, 蒋学慧, 汪曣, 赵学玒. 基于ICP-MS的二氧化硅亚微米粒子特征参数分析[J]. 质谱学报, 2018, 39(5): 567-572. CSTR: 32365.14.zpxb.2017.0164
引用本文: 孙传强, 龚子珊, 蒋学慧, 汪曣, 赵学玒. 基于ICP-MS的二氧化硅亚微米粒子特征参数分析[J]. 质谱学报, 2018, 39(5): 567-572. CSTR: 32365.14.zpxb.2017.0164
SUN Chuan-qiang, GONG Zi-shan, JIANG Xue-hui, WANG Yan, ZHAO Xue-hong. Analysis of Characteristic Parameters of Sub-micron Silicon Dioxide Particles by ICP-MS[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(5): 567-572. CSTR: 32365.14.zpxb.2017.0164
Citation: SUN Chuan-qiang, GONG Zi-shan, JIANG Xue-hui, WANG Yan, ZHAO Xue-hong. Analysis of Characteristic Parameters of Sub-micron Silicon Dioxide Particles by ICP-MS[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(5): 567-572. CSTR: 32365.14.zpxb.2017.0164

基于ICP-MS的二氧化硅亚微米粒子特征参数分析

Analysis of Characteristic Parameters of Sub-micron Silicon Dioxide Particles by ICP-MS

  • 摘要: 将电感耦合等离子体质谱仪(ICP-MS)配合外部质谱信号采集存储装置,用于研究表征亚微米颗粒粒径和浓度参数。在模拟采集模式下,以300~2 000 nm粒径的SiO2粒子为例,通过优化进样系统及仪器的工作参数,分析了样品提取速率和雾化气流速对单颗粒质谱信号强度的影响。在优化的实验条件下,SiO2颗粒粒径部分检测限为233 nm,对300~900 nm粒径粒子测量的线性相关系数大于0.99,但对1 500、2 000 nm粒径粒子的检测结果出现明显偏差。论证了利用样品传输效率测量悬浮液粒子浓度的可行性,并将ICP-MS的粒径测量结果与扫描电镜法(SEM)、光子相关光谱法(PCS)的测量结果进行比较,3种方法对于粒径小于900 nm粒子的测定结果基本一致,且具有相似的测量精度。该方法分析速度快、结果准确,可用于SiO2亚微米粒子粒径、浓度参数的测量。
    Abstract: Nanoparticles and sub-mciro particles were increasingly adopted in the field of catalyzer, semiconductor, magnetic material, biomedical additives, consumer goods and food. Inductively coupled plasma-mass spectrometer (ICP-MS) is an alternative way to determine characteristic parameters of particle. However, the transient signals duration in a range of 300-800 μs from individual particles is shorter than that offered by the most of ICP-MS instruments. In this work, a method of ICP-MS combined with extra data acquisition and storage devices for measuring the diameter and concentration of sub micrometer particles was established. An Elan 6000 ICP-MS was used with the analog output pin connecting to a current amplifier. The amplified signal was recorded by an oscilloscope. The data acquisition rate of 40 kHz was used to obtain an individual peak for each particle. A data processing algorithm including filtering noise and subtracting the threshold was developed in this work to process the raw data. The silicon dioxide particles in the range of 300-2000 nm were used for the optimization of sample system and instrument conditions, the effect of sample uptake rate and sample gas flow rate on the signal intensity from single particle were discussed as well. The signal intensity increased initially with the gas flow rate which may be due to the increasing of nebulization efficiency and approaching to the optimum ionization position, and then decreased after reaching the maximum because of the ion diffusion. The optimum sample gas flow rate was 0.90-0.95 L/min for sample uptake rate of 100 μL/min. Under the conditions of optimization, the diameter detection limit of SiO2 particle was 233 nm, which depended on the background interference, instrument sensitivity and electronic noise. The correlation coefficient of linear calibration curves of particle mass for 300-900 nm particles was over 0.99. While, there were significant deviations for 1 500 nm and 2 000 nm particles measurements. The transport efficiency calculated using particle concentration method was in good agreement with the filter trap method. With the increasing of sample uptake rate, the transport efficiency reduced from 33% to 2.2%. The diameter results given by ICP-MS, photon correlation spectroscopy (PCS) and scanning electron microscope (SEM) showed the consistence under 900 nm. In comparison, a slight worse diameter resolution based on ICP-MS was observed. The broadening effects were considered to be caused by variations in droplets size and ionization positions in plasma. The goals will be focused on improving the transport efficiency of sample introduction system in the future.
  •   2722

  • [1] 张敬畅,刘慷,曹维良. 纳米粒子的特性、应用及制备方法[J]. 石油化工高等学校学报,2001,14(2):21-26.ZHANG Jingchang, LIU Kang, CAO Weiliang. Property, preparation and application of nanoparticle[J]. Journal of Petrochemical Universities, 2001, 14(2): 21-26(in Chinese).
    [2] 秦宇,邓芙蓉,魏红英,等. 纳米银材料中可溶性银离子对皮肤细胞间隙连接通讯的影响[J]. 北京大学学报:医学版,2013,45(3):412-416.QIN Yu, DENG Furong, WEI Hongying, et al. Effects of silver ion of silver nanoparticles on gap junctional intercellular communication of human skin cells[J]. Journal of Peking University: Health Scienses, 2013, 45(3): 412-416(in Chinese).
    [3] STARK W J, STOESSEL P R, WOHLLEBEN W, et al. Industrial applications of nanoparticles[J]. Chemical Society Reviews, 2015, 44(16): 5793-5805.
    [4] LIU J, MURPHY K E, MACCUSPIE R I, et al. Capabilities of single particle inductively coupled plasma mass spectrometry for the size measurement of nanoparticles: a case study on gold nanoparticles[J]. Analytical Chemistry, 2014, 86(7): 3405-3414.
    [5] MONTAÑO M D, OLESIK J W, BARBER A G, et al. Single particle ICP-MS: advances toward routine analysis of nanomaterials[J]. Analytical and Bioanalytical Chemistry, 2016, 408(19): 5053-5074.
    [6] DEGUELDRE C, FAVARGER P Y. Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2003, 217(1/2/3): 137-142.
    [7] DEGUELDRE C, FAVARGER P Y, BITEA C. Zirconia colloid analysis by single particle inductively coupled plasma-mass spectrometry[J]. Analytica Chimica Acta, 2004, 518(1/2): 137-142.
    [8] DEGUELDRE C, FAVARGER P Y, ROSS R, et al. Uranium colloid analysis by single particle inductively coupled plasma-mass spectrometry[J]. Talanta, 2006, 62(5): 1051-1054.
    [9] DEGUELDRE C, FAVARGER P Y, WOLD S. Gold colloid analysis by inductively coupled plasma-mass spectrometry in a single particle mode[J]. Analytica Chimica Acta, 2006, 555(2): 263-268.
    [10] LABORDA F, BOLEA E, JIMÉNEZLAMANA J. Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis[J]. Analytical Chemistry, 2014, 86(5): 2270-2278.
    [11] PACE H E, ROGERS N J, JAROLIMEK C, et al. Single particle inductively coupled plasma-mass spectrometry: a performance evaluation and method comparison in the determination of nanoparticle size[J]. Environmental Science & Technology, 2012, 46(22): 12272-12280.
    [12] OLESIK J W, GRAY P J. Considerations for measurement of individual nanoparticles or microparticles by ICP-MS: determination of the number of particles and the analyte mass in each particle[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(7): 1143-1155.
    [13] AGHAEI M, BOGAERTS A. Particle transport through an inductively coupled plasma torch: Elemental droplet evaporation[J]. Journal of Analytical Atomic Spectrometry, 2015, 31(3): 631-641.
    [14] LEE W W, CHAN W T. Calibration of single-particle inductively coupled plasma-mass spectrometry (SP-ICP-MS)[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(6): 1245-1254.
    [15] PATRICK J G. Nanoparticle characterization, fundamental studies and computer simulations of dynamic reaction cell inductively coupled plasma mass spectrometry[D]. Columbus: The Ohio State University, 2011.
图(1)
计量
  • 文章访问数:  918
  • HTML全文浏览量:  1
  • PDF下载量:  766
  • 被引次数: 0
出版历程
  • 刊出日期:  2018-09-19

目录

    /

    返回文章
    返回