同步辐射光电离质谱检测氟原子在二氧化硅表面反应产物

汪程程, 唐小锋, 温作赢, 王涛, 张翠红, 杨玖重, 顾学军, 张为俊

汪程程, 唐小锋, 温作赢, 王涛, 张翠红, 杨玖重, 顾学军, 张为俊. 同步辐射光电离质谱检测氟原子在二氧化硅表面反应产物[J]. 质谱学报, 2020, 41(1): 39-47. DOI: 10.7538/zpxb.2019.0001
引用本文: 汪程程, 唐小锋, 温作赢, 王涛, 张翠红, 杨玖重, 顾学军, 张为俊. 同步辐射光电离质谱检测氟原子在二氧化硅表面反应产物[J]. 质谱学报, 2020, 41(1): 39-47. DOI: 10.7538/zpxb.2019.0001
WANG Cheng-cheng, TANG Xiao-feng, WEN Zuo-ying, WANG Tao, ZHANG Cui-hong, YANG Jiu-zhong, GU Xue-jun, ZHANG Wei-jun. Reaction Products of F Atoms on the Surface of Silicon Dioxide Probed by Synchrotron Photoionization Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2020, 41(1): 39-47. DOI: 10.7538/zpxb.2019.0001
Citation: WANG Cheng-cheng, TANG Xiao-feng, WEN Zuo-ying, WANG Tao, ZHANG Cui-hong, YANG Jiu-zhong, GU Xue-jun, ZHANG Wei-jun. Reaction Products of F Atoms on the Surface of Silicon Dioxide Probed by Synchrotron Photoionization Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2020, 41(1): 39-47. DOI: 10.7538/zpxb.2019.0001
汪程程, 唐小锋, 温作赢, 王涛, 张翠红, 杨玖重, 顾学军, 张为俊. 同步辐射光电离质谱检测氟原子在二氧化硅表面反应产物[J]. 质谱学报, 2020, 41(1): 39-47. CSTR: 32365.14.zpxb.2019.0001
引用本文: 汪程程, 唐小锋, 温作赢, 王涛, 张翠红, 杨玖重, 顾学军, 张为俊. 同步辐射光电离质谱检测氟原子在二氧化硅表面反应产物[J]. 质谱学报, 2020, 41(1): 39-47. CSTR: 32365.14.zpxb.2019.0001
WANG Cheng-cheng, TANG Xiao-feng, WEN Zuo-ying, WANG Tao, ZHANG Cui-hong, YANG Jiu-zhong, GU Xue-jun, ZHANG Wei-jun. Reaction Products of F Atoms on the Surface of Silicon Dioxide Probed by Synchrotron Photoionization Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2020, 41(1): 39-47. CSTR: 32365.14.zpxb.2019.0001
Citation: WANG Cheng-cheng, TANG Xiao-feng, WEN Zuo-ying, WANG Tao, ZHANG Cui-hong, YANG Jiu-zhong, GU Xue-jun, ZHANG Wei-jun. Reaction Products of F Atoms on the Surface of Silicon Dioxide Probed by Synchrotron Photoionization Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2020, 41(1): 39-47. CSTR: 32365.14.zpxb.2019.0001

同步辐射光电离质谱检测氟原子在二氧化硅表面反应产物

Reaction Products of F Atoms on the Surface of Silicon Dioxide Probed by Synchrotron Photoionization Mass Spectrometry

  • 摘要: 采用微波放电等离子体源产生高密度F原子,结合同步辐射真空紫外光电离质谱全面检测F原子在二氧化硅表面刻蚀反应的产物,并探究其反应机理。通过扫描同步辐射光子能量,获得具有特定质量选择的离子光电离效率谱,测量了反应产物的电离能及碎片离子的出现势等基本参数;同时结合量子化学理论计算质谱中离子的来源,即对光电离和光解离过程进行了区分。结果表明,F原子在二氧化硅表面会反应生成一系列的氟氧硅化合物 (SixOyFz),主要包括SiF4、SiF3OSiF3和SiFOSiF2OF等,质谱中观察到的SiF3+、SiF3OSiF2+等离子信号来源于其对应母体离子的解离碎片。实验测得SiF4的电离能为15.85 eV,SiF3+和SiF3OSiF2+碎片离子的出现势分别为16.20、16.40 eV。该方法实现了高效检测F原子刻蚀反应的产物,由于F原子具有较高的化学反应活性,该实验装置也可用于开展气相自由基反应研究,模拟大气化学和燃烧火焰等体系中的化学反应过程。
    Abstract: F atoms etching reaction as an efficient method has been widely used in the fields of optical manufacture, semiconductor and chemistry. But due to the technical challenges of analysis on-line, the products information, especially for the unstable radicals and intermediates, F atoms etching reaction is limited and hinders to understand its detailed mechanisms. The state-of-the-art method of synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry with high mass reolution and high sensitivity was utilized to probe reaction products of F atoms etching on the surface of silicon dioxide (SiO2), where a microwave discharge plasma source was combined to produce F atoms with high density. Photoionization efficiency spectra (PIES) corresponding to each mass were measured by scanning synchrotron photon energy continuously, and the ionization energies of the species and the appearance energies of fragment ions were measured, in comparison well to the results of theoretical calculation. Then the ion signals in photoionization mass spectra (PIMS) from different sources, photoionization or dissociative photoionization, were defined and assigned. It was shown that a series of fluorine oxygen silicon compounds (SixOyFz) were produced and the reaction products of SiF4, SiF3OSiF3 and SiFOSiF2OF took a large intensity in the PIMS. However, the ion signals of SiF3+ and SiF3OSiF2+ observed in the PIMS were from dissociative photoionization of their respective precursors. In addition, some fundamental data like the ionization energy of SiF4 and the appearance energies of SiF3+ and SiF3OSiF2+ fragment ions from dissociative photoionization of SiF4 and SiF3OSiF3 were measured to be 15.85, 16.20 and 16.40 eV, respectively. This method realizes the efficient detection of products in F atom etching reaction. Because F atom has high chemical reaction activity, the experimental device can also be used to carry out the study of gas phase free radical reaction and simulate the chemical reaction process in atmospheric chemistry and combustion flame system.
  •   2855

  • [1] 戴忠玲,毛明,王友年. 等离子体刻蚀工艺的物理基础[J]. 物理学和高新技术,2006,35(8):693-698.DAI Zhongling, MAO Ming, WANG Younian. The physics of plasma etching[J]. Physics and High Technology, 2006, 35(8): 693-698(in Chinese).
    [2] SRIKAR V T, SPEARING S M. A critical review of microscale mechanical testing methods used in the design of microelectromechanical systems[J]. Experimental Mechanics, 2003, 43(3): 238-247.
    [3] DONNELLY V M, KORNBLIT A. Plasma etching: yesterday, today, and tomorrow[J]. Journal of Vacuum Science & Technology A , 2013, 31(5): 825-848.
    [4] DONNELLY V M. Review article: reactions of fluorine atoms with silicon, revisited, again[J]. Journal of Vacuum Science & Technology A , 2017, 35(5): 202.
    [5] TUDA M, ONO K, NISHIKAWA K. Effects of etch products and surface oxidation on profile evolution during electron cyclotron resonance plasma etching of poly-Si[J]. Journal of Vacuum Science & Technology B, 1996, 14(5): 3291-3298.
    [6] FUKUMOTO H, FUJIKAKE I, TAKAO Y, ERIGUCHI K, ONO K. Plasma chemical behaviour of reactants and reaction products during inductively coupled CF4 plasma etching of SiO2[J]. Plasma Sources Science & Technology, 2009, 18(4): 045 027.
    [7] MOGAB C J, ADAMS A C, FlAMM D L. Plasma etching of Si and SiO2-the effect of oxygen additions to CF4 plasmas[J]. Journal of Applied Physics, 1978, 49(7): 3796-3803.
    [8] VELDHUIZEN E M V, BISSCHOPS T, VLIEMBERGEN E J W V, WOLPUT J H M C V. Absolute densities of reaction products from plasma etching of quartz[J]. Journal of Vacuum Science & Technology A, 1985, 3(6): 2205-2208.
    [9] COBURN J W, WINTERS H F. Ion-and electron-assisted gas surface chemistry-an important effect in plasma etching[J]. Journal of Applied Physics, 1979, 50(5): 3189-3196.
    [10] BUTTERBAUGH J W, GRAY D C, SAWIN H H. Plasma-surface interactions in fluorocarbon etching of silicon dioxide[J]. Journal of Vacuum Science &Technology B, 1991, 9(3):1461-1470.
    [11] VASILE M J. Etching of SiO2 and Si in a He-F2 plasma[J]. Journal of Applied Physics, 1980, 51(5): 2510-2515.
    [12] MATSUMI Y, TOYODA S, HAYASHI T, MIYAMURA M, YOSHIKAWA H, KOMIYA S. Laser-induced fluorescence study of silicon etching process: detection of SiF2 and CF2 radicals[J]. Journal of Applied Physics, 1986, 60(12): 4102-4108.
    [13] CUNGE G, CHABERT P, BOOTH J P. Laser-induced fluorescence detection of as a primary product of Si and reactive ion etching with gas[J]. Plasma Sources Science and Technology, 1997, 6(3): 349-360.
    [14] TANG X F, LIN X X, ZHU Y PWU X K, WEN Z Y, ZHANG L D, LIU F, GU X J, ZHANG W J. Pyrolysis of n-butane investigated using synchrotron threshold photoelectron photoion coincidence spectroscopy[J]. RSC Advances, 2017, 7(46): 28746-28753.
    [15] 王健,潘洋. 卷烟主流烟气中几种醛酮的光电离质谱研究[J]. 质谱学报,2012,33(5):265-270.WANG Jian, PAN Yang. Photoionization mass spectrometric study on several aldehydes and ketones in cigarette mainstream smoke[J]. Journal of Chinese Mass Spectrometry Society, 2012, 33(5): 265-270(in Chinese).
    [16] 郭会军,邓柳林,贾良元,陈冬娜,潘洋,齐飞. 阿司匹林的真空紫外光电离光解离质谱研究[J]. 质谱学报,2009,30(增刊):6-8.GUO Huijun, DENG Liulin, JIA Liangyuan, CHEN Dongna, PAN Yang, QI Fei. Vacuum ultraviolet photo ionization and photodissociation mass spectrometric study of Aspirin[J]. Journal of Chinese Mass Spectrometry Society, 2009, 30(Suppl): 6-8(in Chinese).
    [17] ZHU Y P, WU X K, TANG X F, WEN Z Y, LIU F Y, ZHOU X G, ZHANG W J. Synchrotron threshold photoelectron photoion coincidence spectroscopy of radicals produced in a pyrolysis source: the methyl radical[J].Chemical Physics Letters, 2016, 664: 237-241.
    [18] ZHOU Z Y, DU X, YANG, J, WANG L Z, LI C Y, WEI S, DU L L, QI F, WANG Q P. The vacuum ultraviolet beamline/endstations at NSRL dedicated to combustion research[J]. Journal of Synchrotron Radiation, 2016, 23(4): 1035-1045.
    [19] WEN Z Y, TANG X F, WANG C C, FITTSCHEN C, WANG T, ZHANG C H, YANG J Z, PAN Y, LIU F Y, ZHANG W J. A vacuum ultraviolet photoionization time-of-flight mass spectrometer with high sensitivity for study of gas phase radical reaction in flow tube[J]. International Journal of Chemical Kinetics, 2018, 51: 178-188.
    [20] FRISCH M J, TRUCKS G W, SCHLEGEL H B SCUSERIA G E, ROBB M A, CHEESEMAN J R, SCALMANI G, BARONE V, MENNUCCI B, PETERSSON G A. Gaussian 09, revision D. 01. 2009[CP]. Gaussian, Inc. Wallingford CT.
    [21] LONKHUYZEN H V, DELANGE C A D. High-resolution UV photoelectron spectroscopy of diatomic halogens[J]. Chemical Physics, 1984, 89(2): 313-322.
    [22] BERKOWITZ J, CHUPKA W A, GUYON P M, HOLLOWAY J H, SPOHR R. Photoionization mass spectrometric study of F2, HF, and DF[J]. The Journal of Chemical Physics, 1971, 54(12): 5165-5180.
    [23] PALENIUS H P, LARRABEE J C, TANAKA Y. Absorption spectrum of fluorine F observed with the helium continuum[J]. Journal of the Optical Society of America, 1978, 68(11): 1564-1574.
    [24] 李喜乐. 硅同位素丰度的测定及水分标准物质研究[D]. 北京:北京化工大学,2011.
    [25] WEBER M E, ARMENTRUOT P B. Energetics and dynamics in the reaction of Si+ with SiF4. Thermochemistry of SiFx and SiF+x (x=1, 2, 3)[J]. The Journal of Chemical Physics, 1988, 88(11): 6898-6910.
    [26] BASSETT P J, LLOYD D R. Photoelectron spectra of halides. Part I. tetrafluorides and tetrachlorides of group IVB[J]. Journal of the Chemical Society A Inorganic Physical Theoretical, 1971, (4): 641-645.
    [27] KICKEL B L, FISHER E R, ARMENTROUT P B. Dissociative charge-transfer reactions of N+ (3P), N2++g), Ar+ (2P3/2,1/2), and Kr+ (2P3/2) with tetrafluorosilane. Thermochemistry of SiF4+ and SiF3+[J]. The Journal of Physical Chemistry, 1993, 97(39): 10198-10203.
    [28] 严剑飞,袁凯,太惠玲,吴志明. 二氧化硅的干法刻蚀工艺研究[J]. 微处理机,2010,31(2):16-18.YAN Jianfei, YUAN Kai, TAI Huiling, WU Zhiming. Research of the etching process for silicon dioxide[J]. Microprocessors, 2010, 31(2): 16-18(in Chinese).
    [29] WESYWOOD N P. Photoelectron spectrum of silicon difluoride[J]. Chemical Physics Letters, 1974, 25(4): 558-561.
    [30] HOULE F A. A reinvestigation of the etch products of silicon and XeF2: doping and pressure effects[J]. Journal of Applied Physics, 1986, 60(9): 3018-3027.
    [31] WINTERS H F, PLUMB C. Etching reactions for silicon with F atoms: product distributions and ion enhancement mechanisms[J]. Journal of Vacuum Science & Technology A, 1991, 9(2): 197-207.
图(1)
计量
  • 文章访问数:  899
  • HTML全文浏览量:  0
  • PDF下载量:  578
  • 被引次数: 0
出版历程
  • 刊出日期:  2020-01-19

目录

    /

    返回文章
    返回