激光后电离技术对高电离能元素的信号增强

林铮, 孟一凡, 王彤彤, 杭纬

林铮, 孟一凡, 王彤彤, 杭纬. 激光后电离技术对高电离能元素的信号增强[J]. 质谱学报, 2020, 41(2): 175-180. DOI: 10.7538/zpxb.2019.0165
引用本文: 林铮, 孟一凡, 王彤彤, 杭纬. 激光后电离技术对高电离能元素的信号增强[J]. 质谱学报, 2020, 41(2): 175-180. DOI: 10.7538/zpxb.2019.0165
LIN Zheng, MENG Yi-fan, WANG Tong-tong, HANG Wei. Laser Postionization Technique for Enhancing Signals of High Ionization Potential Elements[J]. Journal of Chinese Mass Spectrometry Society, 2020, 41(2): 175-180. DOI: 10.7538/zpxb.2019.0165
Citation: LIN Zheng, MENG Yi-fan, WANG Tong-tong, HANG Wei. Laser Postionization Technique for Enhancing Signals of High Ionization Potential Elements[J]. Journal of Chinese Mass Spectrometry Society, 2020, 41(2): 175-180. DOI: 10.7538/zpxb.2019.0165
林铮, 孟一凡, 王彤彤, 杭纬. 激光后电离技术对高电离能元素的信号增强[J]. 质谱学报, 2020, 41(2): 175-180. CSTR: 32365.14.zpxb.2019.0165
引用本文: 林铮, 孟一凡, 王彤彤, 杭纬. 激光后电离技术对高电离能元素的信号增强[J]. 质谱学报, 2020, 41(2): 175-180. CSTR: 32365.14.zpxb.2019.0165
LIN Zheng, MENG Yi-fan, WANG Tong-tong, HANG Wei. Laser Postionization Technique for Enhancing Signals of High Ionization Potential Elements[J]. Journal of Chinese Mass Spectrometry Society, 2020, 41(2): 175-180. CSTR: 32365.14.zpxb.2019.0165
Citation: LIN Zheng, MENG Yi-fan, WANG Tong-tong, HANG Wei. Laser Postionization Technique for Enhancing Signals of High Ionization Potential Elements[J]. Journal of Chinese Mass Spectrometry Society, 2020, 41(2): 175-180. CSTR: 32365.14.zpxb.2019.0165

激光后电离技术对高电离能元素的信号增强

Laser Postionization Technique for Enhancing Signals of High Ionization Potential Elements

  • 摘要: 固体样品的元素分析一直是分析化学重点关注的对象。激光作为一种固体直接采样和电离技术,常与飞行时间质谱联用,用于固体样品的元素分析。然而,对于高电离能元素的检测往往需要较大的激光功率密度,导致其离子的动能分散较大,严重影响谱图分辨率。本研究使用激光解吸/激光后电离质谱法(解吸激光波长515 nm,后电离激光波长266 nm)对固体样品中的Pd、Sb、Cd、Au等高电离能元素进行分析。一方面,采用较弱的解吸激光能量解决了强激光解吸电离所带来的动能分散问题,显著提高了谱图分辨率;另一方面,利用较强的后电离激光电离原来被“浪费”掉的绝大部分中性原子,提高原子利用率和仪器灵敏度。该方法无需任何样品前处理、分析时间短、操作简单,适用于固体中高电离能元素的快速检测。
    Abstract: Elemental analysis of solid samples has always been the focus point of analytical chemistry. As a direct solid sampling and ionization technique, laser is often used in conjunction with time-of-flight mass spectrometry for the elemental analysis of solid samples. For the detection of high ionization potential elements, a large laser power density is often required, which results in widely dispersed kinetic energy of ions and deteriorated spectral resolution. Laser desorption/laser postionization mass spectrometry with desorption wavelength of 515 nm and postionization wavelength of 266 nm was used to detect high ionization potential elements such as Pd, Sb, Cd, and Au in this paper. On the one hand, the weak desorption laser energy greatly alleviates the problem of large kinetic energy dispersion and significantly improves the spectral resolution. On the other hand, laser postionization utilizes the “wasted” neutral atoms to improve the atomic utilization and the sensitivity of the instrument.With no sample pretreatment, this method requires short analysis time and simple operation.This method is applicable for rapid detection of high ionization potential elements in solid.
  •   2874

  • [1] CUI Y, VERYOVKIN I V, MAJESKI M W, CAVAZOS D S, HANLE L. High lateral resolution vs molecular preservation in near-IR fs-laser desorption postionization mass spectrometry[J]. Analytical Chemistry, 2015, 87(1): 367-371.
    [2] MILASINOVIC S, CUI Y, GORDON R J, HANLE L. Internal energy of thermometer ions formed by femtosecond laser desorption: implications for mass spectrometric imaging[J]. The Journal of Physical Chemistry C, 2014, 118(50): 28938-28947.
    [3] PEREZ J J, FLANIGAN P M, KARKI S, LEVIS R J. Laser electrospray mass spectrometry minimizes ion suppression facilitating quantitative mass spectral response for multicomponent mixtures of proteins[J]. Analytical Chemistry, 2013, 85(14): 6667-6673.
    [4] JUDGE E J, BRADY J J, BARBANO P E, LEVIS R J. Nonresonant femtosecond laser vaporization with electrospray postionization for ex vivo plant tissue typing using compressive linear classification[J]. Analytical Chemistry, 2011, 83(6): 2145-2151.
    [5] HE M, MENG Y, YAN S, HANG W, ZHOU W, HUANG B. Three-dimensional elemental imaging of nantan meteorite via femtosecond laser ionization time-of-flight mass spectrometry[J]. Analytical Chemistry, 2017, 89(1): 565-570.
    [6] HE M, XIAO Y, ZHANG S, LIU R HANG W, HUANG B. Composition analysis of ancient celadon via femtosecond laser ionization time-of-flight mass spectrometry[J]. Applied Surface Science, 2015, 351: 624-634.
    [7] ZHANG B, ZOU D, HUANG R, LIU G, GONG Z, HANG W, HUANG B. Study on distribution of elements in deep-sea pacific polymetallic nodules via two-dimensional mapping laser ionization orthogonal time-of-flight mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2013, 85: 13-19.
    [8] HANLEY L, WICKRAMASINGHE R, YUNG Y P. Laser desorption combined with laser postionization for mass spectrometry[J]. Annual Review of Analytical Chemistry, 2019, 12(1): 225-245.
    [9] ELSILA J E, de LEON N P, ZARE R N. Factors affecting quantitative analysis in laser desorption/laser ionization mass spectrometry[J]. Analytical Chemistry, 2004, 76(9): 2430-2437.
    [10] STREIBEL T, ZIMMERMANN R. Resonance-enhanced multiphoton ionization mass spectrometry (REMPI-MS): applications for process analysis[J]. Annual Review of Analytical Chemistry, 2014, 7(1): 361-381.
    [11] YIN Z, XU Z, LIU R, HANG W, HUANG B. Microtrace analysis of rare earth element residues in femtogram quantities by laser desorption and laser postionization mass spectrometry[J]. Analytical Chemistry, 2017, 89(14): 7455-7461.
    [12] ANTONOV V S, KNYAZEV I N, LETOKHOV V S, MATIUK V M, MOVSHEV V G, POTAPOV V K. Stepwise laser photoionization of molecules in a mass spectrometer: a new method for probing and detection of polyatomic molecules[J]. Opt Lett, 1978, 3(2): 37-39.
    [13] WINOGRAD N, BAXTER J P, KIMOCK F M. Multiphoton resonance ionization of sputtered neutrals: a novel approach to materials characterization[J]. Chemical Physics Letters, 1982, 88(6): 581-584.
    [14] BECKER C H, GILLEN K T. Surface analysis by nonresonant multiphoton ionization of desorbed or sputtered species[J]. Analytical Chemistry, 1984, 56(9): 1671-1674.
    [15] BECKER C H, GILLEN K T. Nonresonant multiphoton ionization as a sensitive detector of surface concentrations and evaporation rates[J]. Applied Physics Letters, 1984, 45(10): 1063-1065.
    [16] NISHINOMIYA S, KUBOTA N, HAYASHI S I, TAKENAKA H. Matrix effect-free depth profiling of multilayered Si/Ti with laser-SNMS[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2012, 283: 55-58.
    [17] PELSTER A, KÖRSGEN M, HEEGER M, ARLINGHAUS H F. Implementation and optimization of large gas cluster laser post-ionization secondary neutral mass spectrometry for molecular analysis[J]. The Journal of Physical Chemistry C, 2017, 121(28): 15266-15271.
    [18] BREUER L, POPCZUN N J, WUCHER A, WINOGRAD N. Reducing the matrix effect in molecular secondary ion mass spectrometry by laser post-ionization[J]. The Journal of Physical Chemistry C, 2017, 121(36): 19705-19715.
    [19] HAGER J W, WALLACE S C. Two-laser photoionization supersonic jet mass spectrometry of aromatic molecules[J]. Analytical Chemistry, 1988, 60(1): 5-10.
    [20] BOGAERTS A, CHEN Z, GIJBELS R, VERTES A. Laser ablation for analytical sampling: what can we learn from modeling?[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2003, 58(11): 1867-1893.
  • 期刊类型引用(1)

    1. 冯宇,许超,黄兴,马伟哲,刘效禹. 异步传输模式下电路探测激光回波信号增强. 激光与红外. 2024(09): 1366-1372 . 百度学术

    其他类型引用(0)

图(1)
计量
  • 文章访问数:  932
  • HTML全文浏览量:  1
  • PDF下载量:  795
  • 被引次数: 1
出版历程
  • 刊出日期:  2020-03-19

目录

    /

    返回文章
    返回