微区原位元素及同位素分析标准物质研究进展

王松, 高钰涯, 王军, 任同祥

王松, 高钰涯, 王军, 任同祥. 微区原位元素及同位素分析标准物质研究进展[J]. 质谱学报, 2021, 42(5): 641-655. DOI: 10.7538/zpxb.2021.0125
引用本文: 王松, 高钰涯, 王军, 任同祥. 微区原位元素及同位素分析标准物质研究进展[J]. 质谱学报, 2021, 42(5): 641-655. DOI: 10.7538/zpxb.2021.0125
WANG Song, GAO Yu-ya, WANG Jun, REN Tong-xiang. Recent Progress of Reference Materials for In-situ Elemental and Isotopic Microanalysis[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5): 641-655. DOI: 10.7538/zpxb.2021.0125
Citation: WANG Song, GAO Yu-ya, WANG Jun, REN Tong-xiang. Recent Progress of Reference Materials for In-situ Elemental and Isotopic Microanalysis[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5): 641-655. DOI: 10.7538/zpxb.2021.0125
王松, 高钰涯, 王军, 任同祥. 微区原位元素及同位素分析标准物质研究进展[J]. 质谱学报, 2021, 42(5): 641-655. CSTR: 32365.14.zpxb.2021.0125
引用本文: 王松, 高钰涯, 王军, 任同祥. 微区原位元素及同位素分析标准物质研究进展[J]. 质谱学报, 2021, 42(5): 641-655. CSTR: 32365.14.zpxb.2021.0125
WANG Song, GAO Yu-ya, WANG Jun, REN Tong-xiang. Recent Progress of Reference Materials for In-situ Elemental and Isotopic Microanalysis[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5): 641-655. CSTR: 32365.14.zpxb.2021.0125
Citation: WANG Song, GAO Yu-ya, WANG Jun, REN Tong-xiang. Recent Progress of Reference Materials for In-situ Elemental and Isotopic Microanalysis[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5): 641-655. CSTR: 32365.14.zpxb.2021.0125

微区原位元素及同位素分析标准物质研究进展

Recent Progress of Reference Materials for In-situ Elemental and Isotopic Microanalysis

  • 摘要: 微区原位分析技术具有简单、快速、实时在线、空间分辨率高等优点,近年来广泛应用于地球科学、材料科学、生命科学等领域。微区原位分析时,样品前处理过程的省略不可避免地产生显著的基体效应,制约着微区原位分析结果的准确性和可靠性。在测量中使用微区分析标准物质,尤其是与待测样品基体匹配的标准物质对结果进行校正,是克服基体效应最直接有效的方法,是获得可靠测量结果的必要保障。目前,相关微区分析计量标准严重匮乏,导致微区原位测量结果的准确性和可靠性难以保证,这已成为制约其进一步应用和发展的瓶颈,也是相关应用领域和计量研究机构关注的热点。本文系统介绍了微区原位元素及同位素分析用标准物质,包括微区标准物质的技术要求、制备技术、标准样品和标准物质现状等,并对微区原位分析标准物质的发展趋势进行展望。
    Abstract: In-situ microanalysis technology has been extensively used in the fields of geoscience, material analysis and bioimaging due to its advantages including simplicity, rapidity, real-time online, spatial resolution, etc. However, without proper sample pretreatment and separation process, the complex sample matrix will have a significant impact on the measured results, i.e. matrix effect, which should be properly corrected by using the matrix-matched reference material. Meanwhile, due to the grave shortage of related reference material, the traceability of in-situ microanalysis has not been properly solved, it is difficult to obtain comparable and reliable measurements. This situation has become a bottleneck that hinders the application and development of in situ microanalysis technology, and is also the focus of relevant application fields and institutes of metrology. In this review, the reference materials for in situ elemental and isotopic microanalysis were systematically introduced, including technical requirements, preparation technology and existing reference materials, etc. Furthermore, the development tendency of reference materials for in situ microanalysis was prospected.
  •   2997

  • [1] 陈意,胡兆初,贾丽辉,李金华,李秋立,李晓光,李展平,龙涛,唐旭,王建,夏小平,杨蔚,原江燕,张迪,李献华. 微束分析测试技术十年(2011—2020)进展与展望[J]. 矿物岩石地球化学通报,2021,40(1):1-35.
    CHEN Yi, HU Zhaochu, JIA Lihui, LI Jinhua, LI Qiuli, LI Xiaoguang, LI Zhanping, LONG Tao, TANG Xu, WANG Jian, XIA Xiaoping, YANG Wei, YUAN Jiangyan, ZHANG Di, LI Xianhua. Progress of microbeam analytical technologies in the past decade (20112020) and a prospect[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(1): 1-35(in Chinese).
    [2] LIU Y, HU Z, LI M, GAO S. Applications of LAICPMS in the elemental analyses of geological samples[J]. Chin Sci Bull, 2013, 58(32): 3863-3878.
    [3] FENG J, ZHAO H, GONG X, XIA MC, CAI L, YAO H, ZHAO X, YAN Z, LI Z, NIE H, MA X, ZHANG S. In Situ identification and spatial mapping of microplastic standards in paramecia by secondaryion mass spectrometry imaging[J]. Anal Chem, 2021, 93(13): 5521-5528.
    [4] WOODHEAD J D, HORSTWOOD M S A, COTTLE J M. Advances in isotope ratio determination by LA-ICP-MS[J]. Elements, 2016, 12(5): 317-322.
    [5] PETTKE T, OBERLI F, AUDTAT A, GUILLONG M, SIMON A C, HANLEY J J, KLEMM L M. Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS[J]. Ore Geology Reviews, 2012, 44: 10-38.
    [6] OESER M, DOHMEN R, HORN I, SCHUTH S, WEYER S. Processes and time scales of magmatic evolution as revealed by FeMg chemical and isotopic zoning in natural olivines[J]. Geochim Cosmochim Acta, 2015, 154: 130-150.
    [7] HE C, MIGAWA M T, CHEN K, WESTON T A, TANOWITZ M, SONG W, GUAGLIARDO P, IYER K S, BENNETT C F, FONG L G, SETH P P, YOUNG S G, JIANG H. Highresolution visualization and quantification of nucleic acidbased therapeutics in cells and tissues using Nanoscale secondary ion mass spectrometry (NanoSIMS)[J]. Nucleic Acids Res, 2021, 49(1): 1-14.
    [8] ZHANG S, HE M, YIN Z, ZHU E, HANG W, HUANG B. Elemental fractionation and matrix effects in laser sampling based spectrometry[J]. J Anal At Spectrom, 2016, 31(2): 358-382.
    [9] 李秋立,杨蔚,刘宇,唐国强,郝佳龙,张建超,胡森,徐伟彪,林杨挺,李献华. 离子探针微区分析技术及其在地球科学中的应用进展[J]. 矿物岩石地球化学通报,2013,32(3):310-327.
    LI Qiuli, YANG Wei, LIU Yu, TANG Guoqiang, HAO Jialong, ZHANG Jianchao, Husen, XU Weibiao, LIN Yangting, LI Xianhua. Ion microprobe microanalytical techniques and their applications in earth sciences[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(3): 310-327(in Chinese).
    [10] ZHANG W, HU Z. Recent advances in sample preparation methods for elemental and isotopic analysis of geological samples[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2019, 160: 105 690.
    [11] 祁海,马冲先,张培志,郭方全,田云龙. 原位微区分析标准样品制备技术的研究进展[J]. 理化检验化学分册,2020,56(8):938-944.
    QI Hai, MA Chongxian, ZHANG Peizhi, GUO Fangquan, TIAN Yunlong. Research progress of preparation techniques of reference materials for insitu microarea analysis[J]. PTCA (Part B: Chem Anal), 2020, 56(8): 938-944(in Chinese).
    [12] 吴石头,王亚平,许春雪. 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展[J]. 岩矿测试,2015,34(5):503-511.
    WU Shitou, WANG Yaping, XU Chunxue. Research progress on reference materials for in situ elemental analysis by laser ablation-inductively coupled plasmamass spectroscopy[J]. Rock and Mineral Analysis, 2015, 34(5): 503-511(in Chinese).
    [13] BRACCIALI L. Coupled zirconrutile UPb chronology: LA ICPMS dating, geological significance and applications to sediment provenance in the eastern himalayanindoburman region[J]. Geosciences, 2019, 9(11): 467.
    [14] AUDETAT A, GARBESCHOENBERG D, KRONZ A, PETTKE T, RUSK B, DONOVAN J J, LOWERS H A. Characterisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li, Fe, Mn, Ga and Ge[J]. Geostandards and Geoanalytical Research, 2015, 39(2): 171-184.
    [15] ULRICH T, KAMBER B S. Natural obsidian glass as an external accuracy reference material in laser ablationinductively coupled plasmamass spectrometry[J]. Geostandards and Geoanalytical Research, 2013, 37(2): 169-188.
    [16] SUGA K, HIRATA T, FUKUYAMA M, OGASAWARA M. Using a gem garnet (GA1) as a possible reference material for in situ microanalysis of garnet[J]. Geochem J, 2015, 49(4): 421-424.
    [17] WEDENBECK M, ALLE P. Three natural zircon standards for UThPb LuHf trace element and REE analysis[J]. Geostandards Newsletter, 1995, 19(1): 1-23.
    [18] SLAMA J, KOSLER J, CONDON D J, CROWLEY J L, GERDES A, HANCHAR J M, HORSTWOOD M S A, MORRIS G A, NASDALA L, NORBERG N, SCHALTEGGER U, SCHOENE B, TUBRETT M N, WHITEHOUSE M J. Plesovice zircona new natural reference material for UPb and Hf isotopic microanalysis[J]. Chem Geol, 2008, 249(1/2): 1-35.
    [19] GAIN S E M, GRAU Y, HENRY H, BELOUSOVA E, DAINIS I, GRIFFIN W L, O'REILLY S Y. Mud tank zircon: longterm evaluation of a reference material for UPb dating, Hfisotope analysis and trace element analysis[J]. Geostandards and Geoanalytical Research, 2019, 43(3): 339-354.
    [20] JACKSON S E, PEARSON N J, GRIFFIN W L, BELOUSOVA E A. The application of laser ablationinductively coupled plasmamass spectrometry to in situ UPb zircon geochronology[J]. Chem Geol, 2004, 211: 47-69.
    [21] NASDALA L, HOFMEISTER W, NORBERG N, MATTINSON J M, CORFU F, DRR W, KAMO S L, KENNEDY A K, KRONZ A, REINERS P W, FREI D, KOSLER J, WAN Y, GTZE J, HGER T, KRNER A, VALLEY J W. Zircon M257a homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon[J]. Geostandards and Geoanalytical Research, 2008, 32: 247-265.
    [22] BLACK L P, KAMO S L, ALLEN C M, DAVIS D W, ALEINIKOFF J N, VALLEY J W, MUNDIL R, CAMPBELL I H, KORSCH R J, WILLIAMS I S, FOUDOULIS C. Improved 206Pb/238U microprobe geochronology by the monitoring of a traceelementrelated matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards[J]. Chem Geol, 2004, 205: 115-140.
    [23] LI X, TANG G, GONG B, YANG Y, HOU K, HU Z, LI Q, LIU Y, LI W. Qinghu zircon: a working reference for microbeam analysis of UPb age and Hf and O isotopes[J]. Chin Sci Bull, 2013, 58(36): 4647-4654.
    [24] LI X H, LONG W G, LI Q L, LIU Y, ZHENG Y F, YANG Y H, CHAMBERLAIN K R, WAN D F, GUO C H, WANG X C, TAO H. Penglai zircon megacrysts: a potential new working reference material for microbeam determination of Hf-O isotopes and U-Pb age[J]. Geostandards and Geoanalytical Research, 2010, 34(2): 117-134.
    [25] BRACCIALI L, PARRISH R R, HORSTWOOD M S A, CONDON D J, NAJMAN Y. UPb LA(MC)ICPMS dating of rutile: new reference materials and applications to sedimentary provenance[J]. Chem Geol, 2013, 347: 82-101.
    [26] WU L, SHI G, DANISIK M, ZHANG Z, WANG Y, WANG F. MK1 apatite: a new potential reference material for (UTh)/He dating[J]. Geostandards and Geoanalytical Research, 2019, 43(2): 301-315.
    [27] BATANOVA V G, THOMPSON J M, DANYUSHEVSKY L V, PORTNYAGIN M V, GARBESCHOENBERG D, HAURI E, KIMURA J I, CHANG Q, SENDA R, GOEMANN K, CHAUVEL C, CAMPILLO S, IONOV D A, SOBOLEV A V. New olivine reference material for in situ microanalysis[J]. Geostandards and Geoanalytical Research, 2019, 43(3): 453-473.
    [28] SPANDLER C, HAMMERLI J, SHA P, HILBERTWOLF H, HU Y, ROBERTS E, SCHMITZ M. MKED1: a new titanite standard for in situ analysis of SmNd isotopes and UPb geochronology[J]. Chem Geol, 2016, 425: 110-126.
    [29] BUDZYN B, SLAMA J, CORFU F, CROWLEY J, SCHMITZ M, WILLIAMS M L, JERCINOVIC M J, KOZUBBUDZYN G A, KONECNY P, RZEPA G, WLODEK A. TSMnza new monazite age reference material for U-Th-Pb microanalysis[J]. Chem Geol, 2021, 572: 120 195.
    [30] DORAIS C, SIMONETTI A, CORCORAN L, SPANO T L, BURNS P C. Happy jack uraninite: a new reference material for high spatial resolution analysis of URich matrices[J]. Geostandards and Geoanalytical Research, 2020, 44(1): 125-132.
    [31] LI R, XIA X P, CHEN H, WU N, ZHAO T, LAI C, YANG Q, ZHANG Y. A potential new chalcopyrite reference material for secondary ion mass spectrometry sulfur isotope ratio analysis[J]. Geostandards and Geoanalytical Research, 2020, 44(3): 485-500.
    [32] CHEN L, LIU Y, LI Y, LI Q L, LI X H. New potential pyrrhotite and pentlandite reference materials for sulfur and iron isotope microanalysis[J]. J Anal At Spectrom, 2021, DOI: 10.1039/D1JA00029B.
    [33] ZHANG W, WANG Z, MOYNIER F, INGLIS E, TIAN S, LI M, LIU Y, HU Z. Determination of Zr isotopic ratios in zircons using laserablation multiplecollector inductively coupledplasma massspectrometry[J]. J Anal At Spectrom, 2019, 34(9): 1800-1809.
    [34] DENTON J S, MURRELL M T, GOLDSTEIN S J, NUNN A J, AMATO R S, HINRICHS K A. Evaluation of new geological reference materials for uraniumseries measurements: Chinese Geological Standard Glasses (CGSG) and Macusanite Obsidian[J]. Anal Chem, 2013, 85(20): 9975-9981.
    [35] WU S, KARIUS V, SCHMIDT B C, SIMON K, WRNER G. Comparison of ultrafine powder pellet andfluxfree fusion glass for bulk analysis of granitoids by laser ablationinductively coupled plasmamass spectrometry[J]. Geostandards and Geoanalytical Research, 2018, 42: 575-591.
    [36] MONSELS D A, BERGEN M J V, MASON P R D. Determination of trace elements in bauxite using laser ablationInductively coupled plasmamass spectrometry on lithium borate glass beads[J]. Geostandards and Geoanalytical Research, 2018, 42: 239-251.
    [37] ZHANG C, HU Z, ZHANG W, LIU Y, ZONG K, LI M, CHEN H, HU S. Green and fast laser fusion technique for bulk silicate rock analysis by laser ablationinductively coupled plasma mass spectrometry[J]. Anal Chem, 2016, 88(20): 10 08810 094.
    [38] MUKHERJEE P K, KHANNA P P, SAINI N K. Rapid determination of trace and ultra trace level elements in diverse silicate rocks in pressed powder pellet targets by LAICPMS using a matrixindependent protocol[J]. Geostandards and Geoanalytical Research, 2014, 38: 363-379.
    [39] JOCHUM K P, GARBESCHNBERG D, VETER M, STOLL B, WEIS U, WEBER M, LUGLI F. JENTZEN A, SCHIEBEL R, WASSENBURG J A, JACOB D E, HAUG G H. Nanopowdered calcium carbonate reference materials: significant progress for microanalysis?[J]. Geostandards and Geoanalytical Research, 2019, 43(4): 595-609.
    [40] WU S, KARIUS V, SCHMIDT B C, SIMON K, WOERNER G. Comparison of ultrafine powder pellet and fluxfree fusion glass for bulk analysis of granitoids by laser ablationinductively coupled plasmamass spectrometry[J]. Geostandards and Geoanalytical Research, 2018, 42(4): 575-591.
    [41] LIN Y, FENG L, HAO J, LIU Y, HU S, ZHANG J, YANG W. Sintering nanocrystalline calcite: a new method of synthesizing homogeneous reference materials for SIMS analysis[J]. J Anal At Spectrom, 2014, 29(9): 1686-1691.
    [42] 张训彪,陈沛然,胡容明,谢丽珍,丁听生. 电子探针分析用人工晶体标准样品的研制[J]. 电子显微学报,1987,6(1):54-58.
    ZHANG Xunbiao, CHEN Peiran, HU Rongming, XIE Lizhen, DING Tingsheng. Preparation of standard intraocular lens sample for electron probe analysis[J]. Journal of Electron Microscopy, 1987, 6(1): 54-58(in Chinese).
    [43] SAMARDZIJA Z, BERNIK S, MARINENKO R B, MALIC B, CEH M. An EPMA study on KNbO3 and NaNbO3 single crystalspotential reference materials for quantitative microanalysis[J]. Microchimica Acta, 2004, 145(1/2/3/4): 203-208.
    [44] FISHER C M, HANCHAR J M, SAMSON S D, DHUIME B, BLICHERTTOFT J, VERVOORT J D, LAM R. Synthetic zircon doped with hafnium and rare earth elements: a reference material for in situ hafnium isotope analysis[J]. Chem Geol, 2011, 286(1/2): 32-47.
    [45] CHEN K, YUAN H, BAO Z, FAN C, LIU X, SONG J. A preliminary study of the method for synthetic zircon LuHf isotopic standard[J]. Acta Petrologica et Mineralogica, 2012, 31(2): 279-288.
    [46] KE Y, ZHOU J, YI X, SUN Y, SHAO J, YOU S, WANG W, TANG Y, TU C. Development of REEdoped CaWO4 single crystals as reference materials for in situ microanalysis of scheelite via LAICP-MS[J]. J Anal At Spectrom, 2020, 35(5): 886-895.
    [47] MIYAJIMA Y, SAITO A, KAGI H, YOKOYAMA T, TAKAHASHI Y, HIRATA T. Incorporation of U, Pb and rare earth elements in calcite through crystallisation from amorphous calcium carbonate: simple preparation of reference materials for microanalysis[J]. Geostandards and Geoanalytical Research, 2021, 45(1): 189-205.
    [48] STAERK H J, WENNRICH R. A new approach for calibration of laser ablation inductively coupled plasma mass spectrometry using thin layers of spiked agarose gels as references[J]. Analytical and Bioanalytical Chemistry, 2011, 399(6): 2211-2217.
    [49] HALBACH K, WAGNER S, SCHOLZ S, LUCKENBACH T, REEMTSM T. Elemental imaging (LAICPMS) of zebrafish embryos to study the toxicokinetics of the acetylcholinesterase inhibitor naled[J]. Analytical and Bioanalytical Chemistry, 2019, 411(3): 617-627.
    [50] MARINENKO R B, TURNER S, SIMONS D S, RABB S A, ZEISLER R L, YU L L, NEWBURY D E, PAUL R L, RITCHIE N W M, LEIGH S D, WINCHESTER M R, RICHTER L J, MEIER D C, SCOTT K C K, KLINEDINST D, SMALL J A. Characterization of SiGe films for use as a national institute of standards and technology microanalysis reference material (RM 8905)[J]. Microsc Microanal, 2010, 16(1): 1-12.
    [51] WU H, BOETTGER R, COUFFIGNAL F, GUTZMER J, KRAUSE J, MUNNIK F, RENNO A D, HUEBNER R, WIEDENBECK M, ZIEGENRUECKER R. 'BoxProfile' ion implants as geochemical reference materials for electron probe microanalysis and secondary ion mass spectrometry[J]. Geostandards and Geoanalytical Research, 2019, 43(4): 531-541.
    [52] QI H, MA C, ZHANG P, GUO F, TIAN Y. Reasearch progress of preparation techniques of reference materials for insitu microarea analysis[J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2020, 56(8): 938-944.
    [53] HUANG C, WANG H, YANG J H, RAMEZANI J, YANG C, ZHANG S B, YANG Y H, XIA X P, FENG L J, LIN J, WANG T T, MA Q, HE H Y, XIE L W, WU S T. SA01a proposed zircon reference material for microbeam UPb age and HfO isotopic determination[J]. Geostandards and Geoanalytical Research, 2019, 44(1): 103-123.
    [54] TIAN Y, VERMEESCH P, DANIK M, CONDON D J, CHEN W, KOHN B, SCHWANETHAL J, RITTNER M. LGC1: a zircon reference material for insitu (U-Th)/He dating[J]. Chem Geol, 2017, 454: 80-92.
    [55] KENNEDY A K, WOTZLAW J F, SCHALTEGGER U, CROWLEY J L, SCHMITZ M. Eocene zircon reference material for microanalysis of UThPb isotopes and trace elements[J]. Can Mineral, 2014, 52(3): 409-421.
    [56] WEI Q D, WANG H, YANG Y H, YANG J H, HUANG C, WU S T, XIE L W. KV01 zircona potential new archean reference material for microbeam UPb age and Hf-O isotope determinations[J]. Sci China Earth Sci, 2020, 63(11): 1780-1790.
    [57] HUANG C, WANG H, YANG J H, YANG C, LI Z X, YANG Y H, FENG L J, XIE L W, WU S T. Characterization of the potential reference material SA02 for microbeam U-Pb geochronology and Hf-O isotopic composition analysis of zircon[J]. J Anal At Spectrom, 2021, 36(2): 368-374.
    [58] SANTOS M M, LANA C, SCHOLZ R, BUICK I, SCHMITZ M D, KAMO S L, GERDES A, CORFU F, TAPSTER S, LANCASTER P, STOREY C D, BASEI M A, TOHVER E, ALKMIM A, NALINI H, KRAMBROCK K, FANTINI C, WIEDENBECK M. A new appraisal of Sri Lankan BB zircon as a reference materialfor LA-ICP-MS U-Pb geochronology and LuHf isotope tracing[J]. Geostandards and Geoanalytical Research, 2017, 41(3): 335-358.
    [59] COBLE M A, VAZQUEZ J A, BARTH A P, WOODEN J, BURNS D, KYLANDERCLARK A, JACKSON S, VENNARI C E. Trace element characterisation of MAD559 zircon reference material for ion microprobe analysis[J]. Geostandards and Geoanalytical Research, 2018, 42(4): 481-497.
    [60] LUVIZOTTO G L, ZACK T, MEYER H P, LUDWIG T, TRIEBOLD S, KRONZ A, MUENKER C, STOCKLI D F, PROWATKE S, KLEMME S, JACOB D E, von EYNATTEN H. Rutile crystals as potential trace element and isotope mineral standards for microanalysis[J]. Chem Geol, 2009, 261(3/4): 346-369.
    [61] LUVIZOTTO G L, ZACK T. Evaluation of mineral reference materials for microanalysis of Tiphases[J]. Geochim Cosmochim Acta, 2009, 73(13): A805.
    [62] ZHANG L, WU J L, TU J R, WU D, LI N, XIA X P, REN Z Y. RMJG rutile: a new natural reference material for microbeam UPb dating and Hf isotopic analysis[J]. Geostandards and Geoanalytical Research, 2020, 44(1): 133-145.
    [63] SOARES C J, MERTZKRAUS R, GUEDES S, STOCKLI D F, ZACK T. Characterisation of apatites as potential uranium reference materials for fissiontrack dating by LA-ICP-MS[J]. Geostandards and Geoanalytical Research, 2015, 39(3): 305-313.
    [64] GONCALVES G O, LANA C, SCHOLZ R, BUICK I S, GERDES A, KAMO S L, CORFU F, MARINHO M M, CHAVES A O, VALERIANO C, NALINI H A. An assessment of monazite from the Itambe pegmatite district for use as U-Pb isotope reference material for microanalysis and implications for the origin of the "Moacyr" monazite[J]. Chem Geol, 2016, 424: 30-50.
    [65] GONCALVES G O, LANA C, SCHOLZ R, BUICK I S, GERDES A, KAMO S L, CORFU F, RUBATTO D, WIEDENBECK M, NALINI H A, Jr OLIVEIRA L C A. The diamantina monazite: a new lowTh reference material for microanalysis[J]. Geostandards and Geoanalytical Research, 2018, 42(1): 25-47.
    [66] WU L G, LI X H, LING X X, YANG Y H, LI C F, LI Y L, MAO Q, LI Q L, PUTLITZ B. Further characterization of the RW1 monazite: a new working reference material for oxygen and neodymium isotopic microanalysis[J]. Minerals, 2019, 9(10): 583.
    [67] MARIANNE R, YONA N J, OLIVER N, THOMAS Z, REGINA M K, MISSIMO R, DELIA R. Assessment of five monazite reference materials for UTh/Pb dating using laserablation ICP-MS[J]. Geosciences, 2019, 9(9): 391.
    [68] MA Q, EVANS N J, LING X X, YANG J H, WU F Y, ZHAO Z D, YANG Y H. Natural titanite reference materials for in situ UPb and SmNd isotopic measurements by LA(MC)ICP-MS[J]. Geostandards and Geoanalytical Research, 2019, 43(3): 355-384.
    [69] ROBERTS N M W, RASBURY E T, PARRISH R R, SMITH C J, HORSTWOOD M S A, CONDON D J. A calcite reference material for LAICPMS UPb geochronology[J]. Geochem Geophy Geosy, 2017, 18(7): 2807-2814.
    [70] TANG G Q, LI X H, LI Q L, LIU Y, LING X X. A new Chinese national reference material (GBW04481) for calcite oxygen and carbon isotopic microanalysis[J]. Surf Interface Anal, 2020, 52(5): 190-196.
    [71] PANKHURST M J, WALSHAW R, MORGAN D J. Major element chemical heterogeneity in Geo2 olivine microbeam reference material: a spatial approach to quantifying heterogeneity in primary reference materials[J]. Geostandards and Geoanalytical Research, 2017, 41(1): 85-91.
    [72] TANG G Q, SU B X, LI Q L, XIA X P, JING J J, FENG L J, MARTIN L, YANG Q, LI X H. HighMg olivine, clinopyroxene and orthopyroxene reference materials for in situ oxygen isotope determination[J]. Geostandards and Geoanalytical Research, 2019, 43(4): 585-593.
    [73] WANG J, SU B, TANG G, GAO B, WU S, LI J. Olivine, clinopyroxene and orthopyroxene reference materials for Li and O isotope insitu microanalyses and their trace element compositions[J]. Acta Petrol Sin, 2020, 36(4): 1274-1284.
    [74] ZHAO H, ZHAO X M, LE ROUX P J, ZHANG W, WANG H, XIE L W, HUANG C, WU S T, YANG J H, WU F Y, YANG Y H. Natural clinopyroxene reference materials for in situ Sr isotopic analysis via LA-MC-ICP-MS[J]. Front Chem, 2020, 8: 594 316.
    [75] WIEDENBECK M, TRUMBULL R B, ROSNER M, BOYCE A, FOURNELLE J H, FRANCHI I A, HALAMA R, HARRIS C, LACEY J H, MARSCHALL H, MEIXNER A, PACK A, von STRANDMANN P A E P, SPICUZZA M J, VALLEY J W, WILKE F D H. Tourmaline reference materials for the in situ analysis of oxygen and lithium isotope ratio compositions[J]. Geostandards and Geoanalytical Research, 2021, 45(1): 97-119.
    [76] HE M, CHEN T, LIU X, YANG Y N, XIA X, YANG Q, HE P, DI J, ZHANG Y, WEI G. Accurate in situ oxygen isotopic analysis at high resolution by secondary ion mass spectrometry shows the potential of aragonite as a reference material[J]. J Anal At Spectrom, 2021, DOI: 10.1039/DIJA00072A.
    [77] DONOHUE P H, SIMONETTI A, NEAL C R. Chemical characterisation of natural ilmenite: a possible new reference material[J]. Geostandards and Geoanalytical Research, 2012, 36(1): 61-73.
    [78] VASCONCELOS A D, GONCALVES G O, LANA C, BUICK I S, KAMO S L, CORFU F, SCHOLZ R, ALKMIM A, QUEIROGA G, NALINI H A. Characterization of xenotime from datas (Brazil) as a potential reference material for in situ U-Pb geochronology[J]. Geochem Geophy Geosy, 2018, 19(7): 2262-2282.
    [79] LI Q L. Bastnaesite K9: a homogenous natural reference material for insitu UPb And ThPb dating[J]. At Spectrosc, 2020, 41(6): 218-222.
    [80] BAO Z, LV N, CHEN K, LUAN Y, SUN X, ZONG C, YUAN H. A potential new chalcopyrite reference material for LAMCICPMS copper isotope ratio measurement[J]. Geostandards and Geoanalytical Research, 2021, 45(2): 401-418.
    [81] Certificate of analysis, Standard Reference material610/612/614/616, Trace elements in glass[S]. National Institute of Standards and Technology.
    [82] KANE J S. A history of the development and certification of NIST glass SRMs 610617[J]. Geostandards Newsletterthe Journal of Geostandards and Geoanalysis, 1998, 22(1): 7-13.
    [83] JOCHUM K P, WEIS U, STOLL B, KUZMIN D, YANG Q, RACZEK I, JACOB D E, STRACKE A, BIRBAUM K, FRICK D A, GNTHER D, ENZWEILER J. Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines[J]. Geostandards and Geoanalytical Research, 2011, 35(4): 397-429.
    [84] GUILLONG M, HAMETNER K, REUSSER E, WILSON S A, GNTHER D. Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by laser ablationinductively coupled plasmamass spectrometry using 193 nm, 213 nm and 266 nm wavelengths[J]. Geostandards and Geoanalytical Research, 2005, 29(3): 285-302.
    [85] JOCHUM K P, DINGWELL D B, ROCHOLL A, STOLL B, HOFMANN A W, BECKER S, BESMEHN A, BESSETTE D, DIETZE H J, DULSKI P, ERZINGER J, HELLEBRAND E, HOPPE P, HORN I, JANSSENS K, JENNER G A, KLEIN M, McDONOUGH W F, MAETZ M, MEZGER K, MUNKER C, NIKOGOSIAN I K, PICKHARDT C, RACZEK I, RHEDE D, SEUFERT H M, SIMAKIN S G, SOBOLEV A V, SPETTEL B, STRAUB S, VINCZE L, WALLIANOS A, WECKWERTH G, WEYER S, WOLF D, ZIMMER M. The preparation and preliminary characterisation of eight geological MPIDING reference glasses for insite microanalysis[J]. Geostandards Newsletterthe Journal of Geostandards and Geoanalysis, 2000, 24(1): 87-133.
    [86] YANG Q C, JOCHUM K P, STOLL B, WEIS U, KUZMIN D, WIEDENBECK M, TRAUB H, ANDREAE M O. BAMS005 type A and B: new silicate reference glasses for microanalysis[J]. Geostandards and Geoanalytical Research, 2012, 36(3): 301-313.
    [87] HU M Y, FAN X T, STOLL B, KUZMIN D, LIU Y, LIU Y, SUN W, WANG G, ZHAN X C, JOCHUM K P. Preliminary characterisation of new reference materials for microanalysis: Chinese geological standard glasses CGSG-1, CGSG-2, CGSG-4 and CGSG-5[J]. Geostandards and Geoanalytical Research, 2011, 35(2): 235-251.
    [88] WU S, WRNER G, JOCHUM K P, STOLL B, SIMON K, KRONZ A. The preparation and preliminary characterisation of three synthetic andesite reference glass materials (ARM-1, ARM-2, ARM-3) for in situ microanalysis[J]. Geostandards and Geoanalytical Research, 2019, 43(4): 567-584.
    [89] ODEGARD M. Preparation of synthetic calibration materials for use in the microanalysis of oxide minerals by direct fusion in highpurity graphite electrodes: preliminary results for quartz and rutile[J]. Geostandards Newsletterthe Journal of Geostandards and Geoanalysis, 1999, 23(2): 173-186.
    [90] Le FEVRE B, OTTOLINI L. Preparation of reference glasses for insitu analysis of lithium and boron[J]. Microchimica Acta, 2006, 155(1/2): 189-194.
    [91] KLEMME S, PROWATKE S, MUENKER C, MAGEE C W, LAHAYE Y, ZACK T, KASEMANN S A, CABATO E J A, KAESER B. Synthesis and preliminary characterisation of new silicate, phosphate and titanite reference glasses[J]. Geostandards and Geoanalytical Research, 2008, 32(1): 39-54.
    [92] TANG G Q, LIU Y, LI Q L, FENG L J, WEI G J, SU W, LI Y, REN G H, LI X H. New natural and fused quartz reference materials for oxygen isotope microanalysis[J]. At Spectrosc, 2020, 41(5): 188-193.
    [93] JOCHUM K P, WILSON S A, BECKER H, GARBESCHONBERG D, GROSCHOPF N, KADLAG Y, MACHOLDT D S, MERTZKRAUS R, OTTER L M, STOLL B, STRACKE A, WEIS U, HAUG G H, ANDREAE M O. FeMnOx1: a new microanalytical reference material for the investigation of MnFe rich geological samples[J]. Chem Geol, 2016, 432: 34-40.
    [94] FENG Y, ZHANG W, HU Z, LIU Y, CHEN K, FU J, XIE J, SHI Q. Development of sulfide reference materials for in situ platinum group elements and SPb isotope analyses by LA-(MC)-ICP-MS[J]. J Anal At Spectrom, 2018, 33(12): 2172-2183.
    [95] ONUK P, MELCHER F, MERTZKRAUS R, GABLER H E, GOLDMANN S. Development of a matrixmatched sphalerite reference material (MUL-ZnS-1) for calibration of in situ trace element measurements by laser ablationinductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2017, 41(2): 263-272.
    [96] SAUNDERS S, KARDUCK P, SLOOF W G. Certified reference materials for microanalysis of carbon and nitrogen[J]. Microchimica Acta, 2004, 145(1/2/3/4): 209-213.
    [97] COURTNEYDAVIES L, GILBERT S E, CIOBANU C L, TAPSTER S R, RICHARDSON M W, COOK N J, WADE B P, VERDUGOIHL M R, EHRIG K, CONDON D J. A synthetic haematite reference material for LA-ICP-MS U-Pb geochronology and application to iron oxideCu-Au systems[J]. Geostandards and Geoanalytical Research, 2020, 45(1): 143-159.
  • 期刊类型引用(9)

    1. 孙慧中,安子怡,许春雪,陈宗定. 战略性关键金属矿产标准物质现状和需求分析. 岩矿测试. 2024(02): 375-396 . 百度学术
    2. 李松,王毅民,高玉淑,刘斯文. 中国地质标准物质分类评介. 冶金分析. 2024(07): 16-33 . 百度学术
    3. 田东辉,申燕飞,王志刚,陈雅玲,胡岗,周洲,蒲成,刘苹,刘文军,时云霄,李旭. X射线能谱仪/波谱仪校准用纯锰片锰元素含量标准物质研制. 计量科学与技术. 2024(09): 51-60 . 百度学术
    4. 戚博雅,朱海巧,张丽华. 国内外核标准物质发展现状. 广东化工. 2023(04): 115-119 . 百度学术
    5. 张冉,崔磊,王亚磊,张毅,陶兴付,李旭. 铝铜薄膜铜元素含量标准物质研究. 计量科学与技术. 2023(03): 72-79 . 百度学术
    6. 刘妹. 中国地质标准物质研制进展. 岩矿测试. 2023(03): 445-463 . 百度学术
    7. 李松,李小莉,王毅民,高玉淑,邓赛文. 中国地质标准物质40年文献评介. 冶金分析. 2023(08): 38-48 . 百度学术
    8. 林梵宇,尹希杰,刘建鑫,孙延鑫. 原位高分辨微区元素分布特征检测技术的应用进展. 分析测试技术与仪器. 2023(03): 245-260 . 百度学术
    9. 贺茂勇,张宁,文雪琴,程原原,郭钧桦,张晓琳. 硼同位素高精度测定进展、应用及挑战. 东华理工大学学报(自然科学版). 2023(06): 597-607 . 百度学术

    其他类型引用(2)

图(1)
计量
  • 文章访问数:  531
  • HTML全文浏览量:  3
  • PDF下载量:  323
  • 被引次数: 11
出版历程
  • 刊出日期:  2021-09-19

目录

    /

    返回文章
    返回