糖基化修饰对新型冠状病毒刺突蛋白受体结合区(Spike RBD)与受体ACE2结合影响的非变性质谱研究

Studying the Effect of Glycosylation towards SARS-CoV-2 Spike RBD and ACE2 Interaction by Native Mass Spectrometry

  • 摘要: 新型冠状病毒肺炎(新冠)疫情给人类生命安全和社会发展带来巨大威胁。新冠病毒表面的刺突(spike)蛋白受体结合区域(RBD)和宿主细胞膜表面的血管紧张素转化酶2(ACE2)结合是病毒入侵的关键步骤。表征RBD和ACE2结合时的结构基础和动态变化有利于理解病毒入侵的机制,为药物研发提供思路。结构质谱是蛋白质结构表征中广泛应用的方法,本工作通过非变性质谱(native MS)研究糖蛋白RBD和ACE2样品及其复合物。首先,优化了使用PNGase F切除RBD N-糖时的条件,对切糖后RBD蛋白的异质性进行分析,并进一步考察了切糖前后RBD与ACE2形成蛋白复合物的稳定性。结果表明,RBD N-糖的切除会导致其与ACE2形成的复合物稳定性降低。本工作可为RBD的N-糖基化作用分析提供参考,并为后续实验RBD是否需要切N-糖处理提供指导建议。

     

    Abstract: The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has serious consequences on global public health and social development. The binding of receptor binding domain (RBD) of spike protein to angiotensin converting enzyme 2 (ACE2) on the surface of SARS-CoV-2 host cell initiates the infection progress. Spike and ACE2 are both glycoproteins, the impact of glycosylation on protein structures and protein-protein interactions remains largely elusive. Characterizing the structural and dynamics of protein-protein binding progress will improve mechanism understanding of viral infection and facilitate targeted drug design. Structural mass spectrometry (MS) method is widely used in protein structural studies, providing complementary information to conventional biophysical methods, such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy (cryo-EM). Native mass spectrometry (native MS) is an emerging technology that enables the study of intact protein, noncovalent protein-protein, and protein-ligand complexes in their biological state, which can provide structural stability, binding stoichiometry, and spatial arrangement information. Here, native MS was used to examine the interaction between RBD and ACE2 as well as the impact of deglycosylation on the interaction stability of the RBD-ACE2 complex. The results revealed that both RBD and ACE2 are highly glycosylated, ACE2 presents as a dimer while RBD as a monomer, and they form a (RBD-ACE2)2 complex. The conditions of using PNGase F to remove the N-glycan were optimized. At least two O-glycans including NeuAc(2) and GalNAc(1)Gal(1)NeuAc(2) or GlcNAc(1)Gal(1)NeuAc(2) were observed for the N-glycan removed RBD. Furthermore, the stability of the complexes formed by glycosylated and deglycosylated RBD with ACE2 was compared, and the results showed that the removal of N-glycan significantly drops the interaction stability of the RBD-ACE2 complex. Therefore, we -recommend that glycosylation should not be removed for structural and functional studies. Additional glycosylation, structural and dynamics studies on Spike (including separated RBD) and ACE2 complexes would help us to understand the process of viral infection, advance drug design and vaccine developments. Nowadays, a comprehensive MS-based toolbox has been developed for the analysis of protein structure, function, and dynamics, including hydrogen-deuterium exchange MS (HDX-MS), native top-down (nTD) MS, cross-linking MS (XL-MS), and covalent labelling MS (CL-MS), etc. Through integrating structural MS methods, more detailed and comprehensive structural information about glycoproteins and their complexes will be uncovered.

     

/

返回文章
返回