光电离质谱结合GC/MS研究棉麻织物的热解

王毓, 翁俊桀, 贾良元, 齐飞, 周忠岳

王毓, 翁俊桀, 贾良元, 齐飞, 周忠岳. 光电离质谱结合GC/MS研究棉麻织物的热解[J]. 质谱学报, 2015, 36(1): 8-15. DOI: 10.7538/zpxb.youxian.2014.0047
引用本文: 王毓, 翁俊桀, 贾良元, 齐飞, 周忠岳. 光电离质谱结合GC/MS研究棉麻织物的热解[J]. 质谱学报, 2015, 36(1): 8-15. DOI: 10.7538/zpxb.youxian.2014.0047
WANG Yu, WENG Jun-jie, JIA Liang-yuan, QI Fei, ZHOU Zhong-yue. Pyrolysis Study of Cotton and Flax Fabrics by Vacuum Ultraviolet Photoionization Mass Spectrometry and GC/MS[J]. Journal of Chinese Mass Spectrometry Society, 2015, 36(1): 8-15. DOI: 10.7538/zpxb.youxian.2014.0047
Citation: WANG Yu, WENG Jun-jie, JIA Liang-yuan, QI Fei, ZHOU Zhong-yue. Pyrolysis Study of Cotton and Flax Fabrics by Vacuum Ultraviolet Photoionization Mass Spectrometry and GC/MS[J]. Journal of Chinese Mass Spectrometry Society, 2015, 36(1): 8-15. DOI: 10.7538/zpxb.youxian.2014.0047
王毓, 翁俊桀, 贾良元, 齐飞, 周忠岳. 光电离质谱结合GC/MS研究棉麻织物的热解[J]. 质谱学报, 2015, 36(1): 8-15. CSTR: 32365.14.zpxb.youxian.2014.0047
引用本文: 王毓, 翁俊桀, 贾良元, 齐飞, 周忠岳. 光电离质谱结合GC/MS研究棉麻织物的热解[J]. 质谱学报, 2015, 36(1): 8-15. CSTR: 32365.14.zpxb.youxian.2014.0047
WANG Yu, WENG Jun-jie, JIA Liang-yuan, QI Fei, ZHOU Zhong-yue. Pyrolysis Study of Cotton and Flax Fabrics by Vacuum Ultraviolet Photoionization Mass Spectrometry and GC/MS[J]. Journal of Chinese Mass Spectrometry Society, 2015, 36(1): 8-15. CSTR: 32365.14.zpxb.youxian.2014.0047
Citation: WANG Yu, WENG Jun-jie, JIA Liang-yuan, QI Fei, ZHOU Zhong-yue. Pyrolysis Study of Cotton and Flax Fabrics by Vacuum Ultraviolet Photoionization Mass Spectrometry and GC/MS[J]. Journal of Chinese Mass Spectrometry Society, 2015, 36(1): 8-15. CSTR: 32365.14.zpxb.youxian.2014.0047

光电离质谱结合GC/MS研究棉麻织物的热解

Pyrolysis Study of Cotton and Flax Fabrics by Vacuum Ultraviolet Photoionization Mass Spectrometry and GC/MS

  • 摘要: 选取生物质类固体废弃物中的棉麻织物作为研究对象,利用热重、同步辐射真空紫外光电离质谱以及气相色谱-质谱联用技术研究其在低压环境中的热解过程。热重分析结果显示,半纤维素和木质素在麻布中的含量高于棉布中的。结合产物的光电离质谱图以及气质联用仪的实验结果对主要产物进行了定性分析,并研究了热解产物随温度的变化趋势,发现500℃下棉布的热解产物最多,而麻布由于含有较多的半纤维素和木质素成分,表现出较宽的热解温区。此外,热解产物中乙醇醛的含量极低,证明了它是纤维素的二次分解产物。
    Abstract: The pyrolysis processes of cotton and flax fabrics, which are typical kinds of biomass solid waste, were studied under low pressure by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS). The thermogravimetric analysis (TGA) results show that flax fabric has larger proportions of hemicellulose and lignin components compared with cotton fabric. Main pyrolysis products were identified with mass spectra obtained at different photoionization energy together with GC/MS. Temperature-dependent mass spectra of the products show that the most insensitive pyrolysis products of cotton fabric are observed at 500 ℃. Under the effect of hemicellulose and lignin components, flax fabric has a relatively wider temperature range. Moreover, hydroxyacetaldehyde (HAA) always exhibited very minor quantity,which confirms that HAA is a secondary pyrolysis product of cellulose.
  • [1] WU C H, CHANG C Y, LIN J P, et al. Thermal treatment of coated printing and writing paper in MSW: Pyrolysis kinetics[J]. Fuel, 1997, 76 (12): 1151-1157.
    [2] WILLIAMS P T, WILLIAMS E A. Recycling plastic waste by pyrolysis[J]. J I Energy, 1998, 71 (487): 81-93.
    [3] SORUM L, GRONLI M G, HUSTAD J E. Pyrolysis characteristics and kinetics of municipal solid wastes[J]. Fuel, 2001, 80 (9): 1217-1227.
    [4] MALKOW T. Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal[J]. Waste Manage, 2004, 24 (1): 53-79.
    [5] AL-SALEM S M, LETTIERI P, BAEYENS J. Recycling and recovery routes of plastic solid waste (PSW): A review[J]. Waste Manage, 2009, 29 (10): 2625-2643.
    [6] KAN A. General characteristics of waste management: A review[J]. Ener Educ Sci Tech A, 2009, 23 (1/2): 55-69.
    [7] CHENG H F, HU Y N. Municipal solid waste (MSW) as a renewable source of energy: Current and future practices in China[J]. Bioresource Technol, 2010, 101 (11): 3816-3824.
    [8] BALAT M, BALAT M, KIRTAY E, et al. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 2: Gasification systems[J]. Energ Convers Manage, 2009, 50 (12): 3158-3168.
    [9] BRIDGWATER A V. Principles and practice of biomass fast pyrolysis processes for liquids[J]. J Anal Appl Pyrol, 1999, 51 (1/2): 3-22.
    [10] MIRANDA R, SOSABLANCO C, BUSTOSMARTINEZ D, et al. Pyrolysis of textile wastes I. Kinetics and yields[J]. J Anal Appl Pyrol, 2007, 80 (2): 489-495.
    [11] MORRISON W H, ARCHIBALD D D. Analysis of graded flax fiber and yarn by pyrolysis mass spectrometry and pyrolysis gas chromatography mass spectrometry[J]. J Agr Food Chem, 1998, 46 (5): 1870-1876.
    [12] LI Y Y, QI F. Recent applications of synchrotron VUV photoionization mass spectrometry: Insight into combustion chemistry[J]. Accounts Chem Res, 2010, 43 (1): 68-78.
    [13] WENG J J, JIA L Y, WANG Y, et al. Pyrolysis study of poplar biomass by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry[J]. P Combust Inst, 2013, 34 (2): 2347-2354.
    [14] PAN Y, ZHANG L D, GUO H J, et al. Photoionisation and photodissociation studies of nonvolatile organic molecules by synchrotron VUV photoionisation mass spectrometry and theoretical calculations[J]. Int Rev Phys Chem, 2010, 29 (2): 369-401.
    [15] 王述洋. 生物质热解动力学建模及锥式闪速热解装置设计理论研究[D]. 哈尔滨:东北林业大学,2002.
    [16] YANG H P, YAN R, CHEN H P, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86 (12/13): 1781-1788.
    [17] PTASINSKA S, DENIFL S, SCHEIER P, et al. Electron impact ionization of glycolaldehyde[J]. Int J Mass Spectrom, 2005, 243 (2): 171-176.
    [18] LINSTROM P J, MALLARD W G. NIST chemistry webbook[EB/OL]. http:∥webbook.nist.gov.
    [19] LEDE J. Cellulose pyrolysis kinetics: An historical review on the existence and role of intermediate active cellulose[J]. J Anal Appl Pyrol, 2012, 94 (1): 17-32.
    [20] EVANS R J, MILNE T A. Molecular characterization of the pyrolysis of biomass. 1. fundamentals[J]. Energ Fuel, 1987, 1 (2): 123-137.
    [21] SCHULTEN H R, BAHR U, GORTZ W. Pyrolysis field-ionization mass-spectrometry of carbohydrates B polysaccharides[J]. J Anal Appl Pyrol, 1982, 3 (3): 229-241.
    [22] EVANS R J, AGBLEVOR F A, CHUM H L, et al. New approaches to the study of cellulose pyrolysis[J]. Abstr Pap Am Chem S, 1991, 201 (1): 714-724.
    [23] SIPILA K, KUOPPALA E, FAGERNAS L, et al. Characterization of biomass-based flash pyrolysis oils[J]. Biomass Bioenerg, 1998, 14 (2): 103-113.
    [24] DUFOUR A, WENG J J, JIA L Y, et al. Revealing the chemistry of biomass pyrolysis by means of tunable synchrotron photoionisation-mass spectrometry[J]. Rsc Adv, 2013, 3 (14): 4786-4792.
    [25] BRADBURY A G W, SAKAI Y, SHAFIZADE H F. A kinetic model for pyrolysis of cellulose[J]. Journal of Applied Polymer Science, 1979, 23 (11): 3271-3280.
    [26] LUO Z Y, WANG S R, LIAO Y F, et al. Mechanism study of cellulose rapid pyrolysis[J]. Ind Eng Chem Res, 2004, 43 (18): 5605-5610.
    [27] SHEN D K, GU S. The mechanism for thermal decomposition of cellulose and its main products[J]. Bioresource Technol, 2009, 100 (24):6496-6504.
计量
  • 文章访问数:  1041
  • HTML全文浏览量:  0
  • PDF下载量:  1079
  • 被引次数: 0
出版历程
  • 刊出日期:  2015-01-19

目录

    /

    返回文章
    返回